Tools for the Field

Developing Tools to Study Wild Marine Mammals

Animals under human care are used to develop tools and techniques to safely study marine mammals in the wild. This includes novel technologies to measure their behaviour and energy expenditure, validate techniques to identify what prey they are eating, develop safe anaesthetic protocols, and improve surgical techniques to temporarily examine wild marine mammals for treatment and study.

Projects and Recent Papers

Testing a new technique to measure body condition in Steller sea lions (partner: North Pacific Research Board)

Telemetry tags increase the costs of swimming in northern fur seals, Callorhinus ursinus.
Rosen, D. A. S., C. D. Gerlinsky and A. W. Trites. 2018.
Marine Mammal Science 34 (2):385-402. doi:10.1111/mms.12460
Animal-borne instruments have become a standard tool for collecting important data from marine mammals. However, few studies have examined whether placement of these data loggers affects the behavior and energetics of individual animals, potentially leading to biasing data. We measured the effect of two types of relatively small data loggers (<1% of animals

keywords     northern fur seals, Callorhinus ursinus, telemetry, bioenergetics, biologging, diving, swimming, marine mammal
show/hide abstract View Reference

On the utility of accelerometers to predict stroke rate using captive fur seals and sea lions.
Ladds, M. A., D. A. S. Rosen, D. J. Slip and R. G. Harcourt. 2017.
Biology Open 6:1396-1400.
Energy expenditure of free-living fur seals and sea lions is difficult to measure directly, but may be indirectly derived from flipper stroke rate. We filmed 10 captive otariids swimming with accelerometers either attached to a harness (Daily Diary: sampling frequency 32Hz, N = 4) or taped to the fur (G6a+: 25Hz, N = 6). We used down sampling to derive four recording rates from each accelerometer (Daily Diary: 32, 16, 8, 4Hz; G6a+: 25, 20, 10, 5Hz). For each of these sampling frequencies we derived 20 combinations of two parameters (RMW - the window size used to calculate the running mean, and m – the minimum number of points smaller than the local maxima used to detect a peak), from the dynamic acceleration of x, z and x+z, to estimate stroke rate from the accelerometers. These estimates differed by up to ~20% in comparison to the actual number of foreflipper strokes counted from videos. RMW had little effect on the overall differences, nor did the choice of axis used to make the calculations (x, z or x+z), though the variability was reduced when using x+z. The best m varied depending on the axis used and the sampling frequency, where a larger m was needed for higher sampling frequencies. This study demonstrates that when parameters are appropriately tuned, accelerometers are a simple yet valid tool for estimating the stroke rates of swimming otariids.

keywords     otariid, swim mechanics, stroke rate, accelerometer, energetics, biologger
show/hide abstract View Reference

Averaged propulsive body acceleration (APBA) can be calculated from biologging tags that incorporate gyroscopes and accelerometers to estimate swimming speed, hydrodynamic drag and energy expenditure for Steller sea lions.
Ware, C., A. W. Trites, D. A. S. Rosen and J. Potvin. 2016.
PLoS ONE 11(6): e0157326
Forces due to propulsion should approximate forces due to hydrodynamic drag for animals horizontally swimming at a constant speed with negligible buoyancy forces. Propulsive forces should also correlate with energy expenditures associated with locomotion預n important cost of foraging. As such, biologging tags containing accelerometers are being used to generate proxies for animal energy expenditures despite being unable to distinguish rotational movements from linear movements. However, recent miniaturizations of gyroscopes offer the possibility of resolving this shortcoming and obtaining better estimates of body accelerations of swimming animals. We derived accelerations using gyroscope data for swimming Steller sea lions (Eumetopias jubatus), and determined how well the measured accelerations correlated with actual swimming speeds and with theoretical drag. We also compared dive averaged dynamic body acceleration estimates that incorporate gyroscope data, with the widely used Overa ll Dynamic Body Acceleration (ODBA) metric, which does not use gyroscope data. Four Steller sea lions equipped with biologging tags were trained to swim alongside a boat cruising at steady speeds in the range of 4 to 10 kph. At each speed, and for each dive, we computed a measure called Gyro-Informed Dynamic Acceleration (GIDA) using a method incorporating gyroscope data with accelerometer data. We derived a new metric輸veraged Propulsive Body Acceleration (APBA), which is the average gain in speed per flipper stroke divided by mean stroke cycle duration. Our results show that the gyro-based measure (APBA) is a better predictor of speed than ODBA. We also found that APBA can estimate average thrust production during a single stroke-glide cycle, and can be used to estimate energy expended during swimming. The gyroscope-derived methods we describe should be generally applicable in swimming animals where propulsive accelerations can be clearly identified in the signal預nd they should also prove useful for dead-reckoning and improving estimates of energy expenditures from locomotion.

keywords     biologging, ODBA, accelerometer, gyroscope, swimming, speed, energy expenditure, drag, stroke
show/hide abstract View Reference

Effect of phylogeny and prey type on fatty acid calibration coefficients in three species of pinnipeds - implications for the QFASA dietary quantification technique.
Rosen, D. A. S. and D.J. Tollit. 2012.
Marine Ecology Progress Series 467:263-276.
Quantitative fatty acid signature analysis (QFASA) has been proposed as a technique for determining the long-term diet of animals. The method compares the fatty acid (FA) profiles of predators and potential prey items to estimate relative prey intake. We tested the assumptions of a key step in QFASA, the correction of predator FA signatures for metabolic processes through sets of calibration coefficients (CCs). We conducted long-term controlled feeding studies with captive Steller sea lions consuming herring and eulachon and northern fur seals consuming herring. We compared the results with data from harbour seals eating herring to evaluate the effects of phylogeny and prey type on individual CCs. Even within the limited extended dietary FA subset recommended for use by other researchers, we found that at least 41% of the CCs differed by family (otariid vs. phocid seals) and 58% differed by predator species (sea lion vs. fur seal), suggesting that CCs may be highly species- specific. We also found that 64% of the CCs differed by prey type (sea lions consuming herring vs. eulachon), which raises some fundamental implementation issues. We also found significant differences in diet predictions when the herring- and eulachon-derived sets of CCs were applied to an actual multi-species diet. CCs are presently used as a simple mathematical attempt to describe potentially complex biochemistry. The results of this study raise questions regarding the validity of using CCs derived from an alternative predator species, and highlight some fundamental issues regarding QFASA methodology that need to be addressed through further controlled studies.
show/hide abstract View Reference Learn more about what was found