MARINE MAMMAL RESEARCH UNIT - UBC

Improving Health & Welfare

Improving Animal Health and Welfare

Research into the health of individual animals is critical for ensuring their welfare, aids in conservation of wild populations, and provides insight into ecosystem health. We are developing innovative diagnostic methods such as MRIs, endoscopy and sonography, genome mapping of species, disentangling and rehabilitating individual animals.  We are also developing cardiac and blood profiles for health assessments, and ecosystem screening for oncoming disease.


Projects and Recent Papers

Assessing cardiac function in otariid seals as a diagnostic tool for assessing animal health (partner: NSERC)


2021
 
Cardiac examinations of anesthetized Steller sea lions (Eumetopias jubatus), northern fur seals (Callorhinus ursinus), and a walrus (Odobenus rosmarus).
Storlund, R.L., D.A.S. Rosen, M. Margiocco, M. Haulena and A.W. Trites. 2021.
Journal of Zoo and Wildlife Medicine 52(2):507-519.
abstract
Pinniped hearts have been well described via dissection, but in vivo measurements of cardiac structure, function, and electrophysiology are lacking. Electrocardiograms (ECGs) were recorded under anesthesia from 8 Steller sea lions (Eumetopias jubatus), 5 northern fur seals (Callorhinus ursinus), and 1 walrus (Odobenus rosmarus) to investigate cardiac electrophysiology in pinnipeds. In addition, echocardiograms were performed on all 8 anesthetized Steller sea lions to evaluate in vivo cardiac structure and function. Measured and calculated ECG parameters included P‑wave, PQ, QRS, and QT interval durations, P‑, R‑, and T‑wave amplitudes, P‑ and T‑wave polarities, and the mean electrical axis (MEA). Measured and calculated echocardiographic parameters included left ventricular internal diameter, interventricular septum thickness, and left ventricular posterior wall thickness in systole and diastole (using M-mode), left atrium and aortic root dimensions (using 2D), and maximum aortic and pulmonary flow velocities (using pulsed wave spectral Doppler). ECG measurements were similar to those reported for other pinniped species, but there was considerable variation in the MEAs of Steller sea lions and northern fur seals. Echocardiographic measurements were similar to those reported for southern sea lions (Otaria flavenscens), including 5 out of 8 Steller sea lions having a left atrial to aortic root ratio < 1, which may indicate that they have an enlarged aortic root compared to awake terrestrial mammals. Isoflurane anesthesia likely affected some of the measurements as evidenced by the reduced fractional shortening found in Steller sea lions compared to awake terrestrial mammals. The values reported are useful reference points for assessing cardiac health in pinnipeds under human care.
show/hide abstract View Reference

2019
 
The genome of the Steller sea lion (Eumetopias jubatus).
Kwan, H.H., L. Culibrk, G.A. Taylor, S. Leelakumari, R. Tan, S.D. Jackman, K. Tse, T. MacLeod, D. Cheng, E. Chuah, H. Kirk, P. Pandoh, R. Carlsen, Y. Zhao, A.J. Mungall, R. Moore, I. Birol, M.A. Marra, D.A.S. Rosen, M. Haulena and S.J.M. Jones. 2019.
Genes Vol 10(486):doiorg/103390/genes10070486.
abstract
The Steller sea lion is the largest member of the Otariidae family and is found in the coastal waters of the northern Pacific Rim. Here, we present the Steller sea lion genome, determined through DNA sequencing approaches that utilized microfluidic partitioning library construction, as well as nanopore technologies. These methods constructed a highly contiguous assembly with a scaffold N50 length of over 14 megabases, a contig N50 length of over 242 kilobases and a total length of 2.404 gigabases. As a measure of completeness, 95.1% of 4104 highly conserved mammalian genes were found to be complete within the assembly. Further annotation identified 19,668 protein coding genes. The assembled genome sequence and underlying sequence data can be found at the National Center for Biotechnology Information (NCBI) under the BioProject accession number PRJNA475770.

keywords     Steller sea lion, genetics
show/hide abstract View Reference

2018
 
Reference ranges and age-related and diving exercise effects on hematology and serum chemistry of female Steller sea lions (Eumetopias jubatus).
Gerlinsky, C. D., M. Haulena, A. W. Trites and D. A. S. Rosen. 2018.
Journal of Zoo and Wildlife Medicine 49(1):18-29.
abstract
Decreased health may have lowered the birth and survival rates of Steller sea lions (Eumetopias jubatus) in the Gulf of Alaska and Aleutian Islands over the past 30 yr. Reference ranges for clinical hematology and serum chemistry parameters needed to assess the health of wild sea lion populations are limited. Here, blood parameters were serially measured in 12 captive female Steller sea lions ranging in age from 3 wk to 16 yr to establish baseline values and investigate age-related changes. Whether diving activity affects hematology parameters in animals swimming in the ocean compared with animals in a traditional aquarium setting was also examined. Almost all blood parameters measured exhibited significant changes with age. Many of the age-related changes reflected developmental life history changes, including a change in diet during weaning, an improvement of diving capacity, and the maturity of the immune system. Mean corpuscular hemoglobin and mean corpuscular volume were also higher in the ocean diving group compared with the aquarium group, likely reflecting responses to increased exercise regimes. These data provide ranges of hematology and serum chemistry values needed to evaluate and compare the health and nutritional status of captive and wild Steller sea lions.

keywords     Diving, Eumetopias jubatus, hematology, marine mammal, serum chemistry, Steller sea lion
show/hide abstract View Reference Learn more about what was found

2015
 
A nutrigenomic approach to detect nutritional stress from gene expression in blood samples drawn from Steller sea lions.
Spitz, J., V. Becquet, D.A.S. Rosen and A.W. Trites. 2015.
Comparative Biochemistry and Physiology: Part A 187:214-223.
abstract
Gene expression profiles are increasingly being used as biomarkers to detect the physiological responses of a number of species to disease, nutrition, and other stressors. However, little attention has been given to using gene expression to assess the stressors and physiological status of marine mammals. We sought to develop and validate a nutrigenomics approach to quantify nutritional stress in Steller sea lions (Eumetopias jubatus). We subjected 4 female Steller sea lions to 3 feeding regimes over 70-day trials (unrestricted food intake, acute nutritional stress, and chronic nutritional stress), and drew blood samples from each animal at the end of each feeding regime. We then extracted the RNA of white blood cells and measured the response of 8 genes known to react to diet restriction in terrestrial mammals. Overall, we found that the genomic response of Steller sea lions experiencing nutritional stress was consistent with diet restriction regulation in terrestrial mammals. Our nutritionally stressed sea lions down-regulated some cellular processes involved in immune response and oxidative stress, and up-regulated pro-inflammatory responses and metabolic processes. Nutrigenomics appears to be a promising means to monitor nutritional status and contribute to mitigation measures needed to assist in the recovery of Steller sea lions and other at-risk species of marine mammals.

keywords     Genomics, Expression profile, q-PCR, Diet, restriction, Biomarker, Monitoring
show/hide abstract View Reference Learn more about what was found