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Abstract

Over 100 food webs have been published for marine ecosystems to describe the transfer of food energy
from its source in plants, through herbivores, to carnivores and higher order predators. The webs suggest
that the lengths of the chains that form food webs are typically short (3—4 links), and that ecosystems with
long food chains may be less stable than those with shorter food chains.

Stomach contents have been the primary means for determining what marine organisms eat. More
recently developed techniques include faecal analysis and fatty acid signatures from blood or fat samples.
Consumption has been estimated from the volume of food found in stomachs, from the feeding rates of
captive individuals and from bio-energetic modelling. Consumption of marine organisms, expressed as a
percentage of an individual’s body weight per day, ranges from about 4-15% for zooplankton, to 1-4% for
cephalopods, 1-2% for fish, 3-5% for marine mammals and 15-20% for sea birds. Immature age classes con-
sume about twice as much (per unit of body weight) as do mature individuals. Furthermore, consumption is
not constant throughout the year, but varies with seasonal periods of growth and reproduction. Most
groups of species consume 3-10 times more than they produce, and export or pass up the food web about
70-95% of their production. Marine organisms tend to be larger at successive trophic levels and are limited
in the sizes of food they can consume. Humans are one of the few species that can prey upon almost any level
of the food chain and any size of prey.

Food web analysis and estimates of consumption are essential for understanding which ecosystems
can support additional species, and which may be less stable and susceptible to species loss through the
synergistic effects of fishing or culling. They are also critical tools for understanding changes in ecosystem
dynamics as highlighted by a case study from the eastern Bering Sea.

qualitative depictions of the interrelation-
ships between species are being replaced
increasingly with quantitative descriptions of

Introduction

The understanding of predator-prey rela-

tionships within marine food webs has
increased enormously since the first simple
food web was drawn for herring in the North
Sea (Hardy, 1924). What were once simple

entire ecosystems. This in turn is allowing
fisheries biologists to estimate better the
amount of food consumed by various species,
and to make predictions about the effects of
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fisheries on predator—-prey relationships, and
of the effects of food web dynamics on
fisheries.

The following provides an overview of
marine food webs and the amounts of food
that marine organisms consume. Emphasis
is placed on apparent patterns that a number
of biologists have noted in comparing food
webs among different ecosystems regarding
ecosystem stability, food chain lengths and
food web complexity. The efficiency of energy
transfer between trophic levels is also dis-
cussed in the context of digestion and assimi-
lation efficiencies of marine organisms; and
the interplay between food webs and con-
sumption is highlighted with a case study
from the eastern Bering Sea.

Food Webs

A food chain delineates one possible path-
way for the transfer of energy from plants to
herbivores, to carnivores and top predators.
Myriads of food chains within an ecosystem
form a food web, which biologists typically
have drawn as a series of interconnected
species joined by lines showing the presence
or absence of interactions (e.g. Fig. 8.1). This
is the simplest depiction of who eats whom.
Species may be identified individually or
may be grouped into functional categories
(e.g. groundfish or benthic invertebrates)
based on similar life history characteristics
or other traits.

A more refined depiction of food webs
(energy flow food webs) highlights the
trophic level of each species and the relative
strength of the interactions (based on the
amount of energy flowing from producers
and consumers, e.g. Fig. 8.2). Here, species or
groups of species are placed according to their
trophic level (calculated as 1.0 plus the mean
trophiclevel of the species that they consume),
and the size of each box is relative to the
biomass of the species. In general, trophic
levels of functional groups tend to cluster
about integer values (e.g. Fig. 8.2).

Energy flow food webs convey consider-
ably more information about the ecosystem
than do topological food web drawings.

However, both depictions of food webs
(energy flow and topological) fail to convey
which interactions are critical to maintaining
the ecosystem in its normal state. For example,
regardless of the amount of energy consumed
or produced in a near-shore marine ecosys-
tem, removing limpets would have little effect
compared with removing urchins, because
urchins dramatically alter the physical
structure of the ecosystem by consuming
kelp. Functional food webs thus differ from
the other two depictions of food webs by high-
lighting the linkages that are most important
to community structure (Paine, 1980; Huxham
etal., 1995). However, functional relationships
are not yet well enough understood to make
this a practical means of depicting food webs.

Food webs are built by knowing which
producers are eaten, and in what proportion
consumers eat them. Stomach contents have
been the principal source of dietary data and
continue to be the main tool for identifying the
numbers, sizes and types of species consumed
by fish (e.g. Christensen, 1995). Seabird and
marine mammal diets are determined in a
similar manner (e.g. Pauly et al., 1998; Santos
et al., 2001), although attempts are being
made to determine diet from alternative
means. Fatty acid signatures are one of the
newer methods of identifying prey of whales
and seals, using milk samples, blood samples
and blubber biopsies (e.g. Grahl-Nielsen and
Mjaavatten, 1991; Iverson et al., 1997; Kirsch
et al., 1998). Seal diets are being determined
more commonly now from the hard parts
(bones, eye lenses and beaks) found in
stomachs or faecal remains collected from
sites where animals haul out and rest (e.g.
Tollit et al., 1997; Kirkman et al., 2000; Cottrell
and Trites, 2002). Stable isotope analysis is
yet another recently developed technique
for determining diet (e.g. Wada et al., 1991;
Kaelher et al., 2000; Kelly, 2000).

Comparative analyses

Over the past 80 years, food web research
has sought to reduce complexity and identify
recurring patterns that might infer underly-
ing mechanisms or represent constraints on



Food Webs in the Ocean

127

%
ICE ALGAE
- 1

b3

g

DETRITUS

Fig. 8.1.

A simplified depiction of the Bering Sea food web: (1) ice algae; (2) phytoplankton; (3)

copepods; (4) mysids and euphausids; (5) medusae; (6) hyperid amphipods; (7) seabirds; (8, 9)
pelagic fishes; (10) walrus; (11) seals; (12) basket stars; (13) ascidians; (14) shrimps; (15) filter-feeding
bivalves; (16) sand dollars; (17) sea stars; (18) crabs; (19) bottom feeding fishes; (20) polychaetes;
(21) predatory gastropods; (22) deposit feeding bivalves (from McConnaughey and McRoy, 1976).

ecosystem structure (e.g. Summerhayes and
Elton, 1923; Elton, 1927; Cohen, 1977, 1978;
Pimm, 1982, 1991; Lawton and Warren, 1988;
Lawton, 1989; Cohen et al., 1990; Winemiller,
1990; Christensen and Pauly, 1993; Hall and
Raffaelli, 1996; Raffaelli, 2000). Based on com-
parisons of food webs (mostly terrestrial eco-
systems), a number of generalizations have

been postulated about the sizes of organisms,
the lengths of food chains and the stability of
ecosystems.

Elton (1927) was among the first to
remark that animals occupying successively
higher trophic levels tended to be larger, and
that there were upper and lower limits on the
size of food that they can eat. Humans are one
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of the few species that can consume prey of
any size and can feed at all trophic levels. As
noted by Krebs (1996), this is one of the rea-
sons that humans are so biologically success-
ful. Omnivorous species are relatively rare,
although there are species of fish that eat their
way up the food chain as they grow. Organ-
isms at the base of the food web tend to be
more numerous than species at higher trophic
levels, and are often represented as a pyramid
of numbers and size (total biomass) to assess
the relative distribution of biomass among
trophic levels within an ecosystem (Fig. 8.3).
Overall, system biomass is proportional
to primary production (Pimm, 1982), and the
proportion of species occupying top, inter-
mediate and basal trophic levels appears to
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be constant across food webs (Cohen, 1978).
There also appears to be a relatively constant
ratio of 2-3 species of prey for every predator
in an ecosystem (Martinez, 1991), although
numbers of species of prey consumed by each
species of predator tend to increase as the size
of the food web increases.

A number of biologists have noted that
food chains typically are short (Elton, 1927;
Hutchinson, 1959; Pimm and Lawton, 1977;
Pimm, 1982; Ricklefs and Miller, 2000). How-
ever, the average number of links appears
to be longer in marine ecosystems compared
with freshwater communities, grasslands or
wet tropical forests (Briand and Cohen, 1987;
Ricklefs and Miller, 2000). Christensen and
Pauly (1993) compared 41 aquatic ecosystems

Biomass

East Bering Sea 1950s

Per 1960s

Gulf of Mexico

& 0.1t km=2

Fig. 8.3. Trophic pyramids representing the distribution of biomass and energy flow in four ecosystems.
The pyramids are scaled so that the volume at each trophic level corresponds to the sum of all flows
at that level. The top angles are inversely proportional to the transfer efficiency (acute angle = high

efficiency) (from Trites et al., 1999).
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and found average path lengths of 2-5 link-
ages. The longest average path lengths werein
tropical estuaries (3.0-5.0), followed by tropi-
cal shelves (2.8-4.0) and oceanic upwelling
areas (2.2-2.8) (Baird et al., 1991; Christensen
and Pauly, 1993). Maximum chain lengths
were eight in tropical shelves, seven in
tropical estuaries and six in oceanic upwelling
areas (Christensen and Pauly, 1993). This is
supported further by a review of 75 aquatic
food webs that found only three with
maximum food chains longer than six
(Schoener, 1989).

It appears that the average number of
feeding links per species (linkage density)
increases as the size of the web (i.e. number
of species) increases. This implies that the
number of prey that a predator will eat
increases in proportion to the total number
of species in that community. However, the
number of links relative to all possible links
(connectance) decreases as the number of
groups in a food web increases (Pimm, 1982;
Christensen and Pauly, 1993). Martens (1987)
suggested that this might reflect an increase
in ecosystem stability. However, Christensen
and Pauly (1993) conclude that any interpreta-
tion of connectance is ambiguous due to the
binary nature of its scoring (i.e. either a link
exists or it does not, irrespective of the fraction
of diet it represents).

The length of food chains may be a
function of the amount of primary production
at the base of the food pyramid, and the effi-
ciency with which energy is transferred from
one trophic level to the next (Hutchinson,
1959; Slobodkin, 1960). Higher rates of trans-
fer efficiency presumably mean that more
energy can be passed up the food chain to
support more species. However, Pimm (1991)
disputes this explanation, noting that some
areas of high ocean productivity have short
food chains. He argues instead that longer
food chains are associated with stable envi-
ronments, while shorter food chains are in
less predictable environments. Species at the
end of long food chains would be at risk of
extinction if the abundance of species lower in
the food chain fluctuated severely.

In general, it appears that food webs in
variable environments have fewer linkages
than webs in more constant environments

(Briand, 1983). However, it has also been
shown experimentally that food chains
are longer in more productive environments
(Pimm and Kitching, 1987; Jenkins et al., 1992),
and that population dynamics are less stable
in long food chains than in short ones (Lawler
and Morin, 1993). Thus it appears that the
length of food chains is a function of both
environmental stability and energy transfer
efficiency.

Limitations of food webs

Food webs, such as those shown in Figs 8.1
and 8.2, are collages of species interactions
that sometimes conceal more than they reveal
(Paine, 1988; Raffaelli, 2000). For example,
some of the interactions may not occur
simultaneously, or they may change over
seasons or years. They also tend to be over-
simplifications. Similarly, some interactions,
such as parasite/pathogen—host interactions
or mutualistic interactions, may be critical to
community dynamics but fail to be captured
by food web depictions (Cohen, 1993; Paine,
1994; Huxham et al., 1995; Hall and Raffaelli,
1996).

Food web diagrams are useful tools for
conceptual understanding of ecosystems des-
pite their shortcomings and the inadequacy of
many of the food webs used in comparative
analyses (see critiques by Paine, 1988; Polis,
1991; Hall and Raffaelli, 1993, 1996). With the
advent of quantitative ecosystem modelling
tools (e.g. Christensen and Pauly, 1992;
Jorgensen, 1998), food web analysis is leading
towards a better understanding of food web
structure and the design of better manage-
ment strategies for conservation. The struc-
ture of food webs has implications for
community persistence (Pimm, 1991), and
may provide insights into which systems
can support additional species, and which
are unstable and susceptible to species losses.
This is particularly relevant to understanding
the effects on food webs of culling (e.g.
Yodzis, 1998), overfishing (e.g. Christensen,
1998; Hacquebord, 1999; Jackson et al.,2001) or
introducing exotic species (e.g. Grosholz et al.,
2000). Food web analysis may also help to
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identify which processes are critical to the
ecosystem, and highlight which components
need more research (Wooten, 1994).

Food Consumption

Consumption can be expressed as the total
amount eaten, or as the rate (i.e. velocity)
that energy is ingested. For the purpose of
this review, consumption is defined as the
amount of food eaten in a fixed period of
time (i.e. days or years).

Organisms require energy for growth,
reproduction, physical activity and mainte-
nance of cells and organs, and must ingest
sufficient calories to meet these fixed costs of
living. However, organisms cannot assimilate
all of the energy contained within the food
they ingest due to differences in the nutrient
content and digestibility of different types of
prey. For example, an organism that ingests
excess nitrogen in its diet will excrete it as
energy in the form of nitrogen-containing
organic waste. Thus, energy that is digested
and absorbed (assimilated energy) is a func-
tion of digestive physiology and of the make
up of the prey (e.g. proportion of bones, scales,
exoskeleton, etc.). Digestibility of ingested
prey may also vary by season. Generally,
foods of animal origin are easier to digest
than foods of plant origin, and vertebrates
are easier to digest than invertebrates.
Thus assimilation efficiency depends on the
quality of the diet (particularly the amount

Table 8.1.

of digestion-resistant structural material it
contains) and varies from about 15 to 90%.
Non-assimilated energy — excreted in the
form of waste — contributes to detritus and is
consumed by species specializing in digesting
recalcitrant materials. Within the context of an
ecosystem, no energy is wasted energy.
Assimilated energy can be used by the
organism for the synthesis of new biomass
(production) through growth and reproduc-
tion, which can be consumed by organisms at
higher trophic levels. The fraction of ingested
food that is used for production is lowest in
organisms whose costs of maintenance and
activity are greatest, and highest in species
with low maintenance and activity costs (e.g.
0.2-0.3% gross food conversion efficiency in
mammals, 1.1-1.5% in birds, 15-30% in fish
and 30-40% in cephalopods; see Table 8.1).

Estimating energy requirements

There are a number of ways to estimate the
amount of food consumed by marine organ-
isms. Stomach content analysis is one method
of determining daily ration, but involves
making a number of assumptions about
frequency of feeding and seasonal changes in
energy requirements (e.g. Jarre et al., 1991).
Another approach is to infer feeding rates
from those of captive-fed individuals, or
to measure the metabolism of free-ranging
individuals (e.g. via doubly labelled water) or
of captive individuals (via oxygen exchange)

Approximate rates of consumption, growth, efficiency and turnover for six major species

groups. Q/B is the ratio of ingested energy to biomass, and is expressed as a daily and annual rate of
consumption. Population growth rate is expressed as the ratio of annual production to biomass (P/B),
and gross food efficiency (P/Q) is the fraction of ingested gross energy that is converted into production
(growth). Turnover rate is the average residency time of energy within each species group (expressed in

years).

Consumption ~ Consumption Growth rate  Gross efficiency Turnover rate
Species Q/B day™ Q/B year P/B year P/Q B/P years
Sea birds 0.15-0.20 55-73 0.80 0.011-0.015 1.25
Mammals 0.03-0.05 11-18 0.02-0.06 0.002-0.003 17.00-50.00
Fish 0.01-0.02 3-8 0.60-2.50 0.150-0.300 0.40-1.70
Crabs and shrimp 0.02-0.05 8-20 1.50-3.00 0.150-0.200 0.30-0.70
Squid 0.01-0.04 4-15 1.50-4.50 0.300-0.400 0.20-0.70
Zooplankton 0.04-0.15 15-55 2.50-6.50 0.120-0.170 0.15-0.40

Source: based on Christensen (1995) and Trites et al. (1999).
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(e.g. Winberg, 1956; Mann, 1978; Innes et al.,
1987). An alternative, but practically impossi-
ble method in aquatic systems, is to derive
consumption from estimates of biomass
missing from lower trophic levels. A fifth
approach is modelling.

Models typically synthesize information
(either measured or assumed from related
species) about the costs of basal metabolism,
activity, growth, reproduction, excreted
waste and assimilation efficiencies — and
range from simple to detailed accountings.
The simplest approach estimates food con-
sumption as a function of food conversion
efficiency and mean individual weight (e.g.
Kendeighetal., 1977; Croxall et al., 1984; Pauly,
1986, 1989; Innes et al., 1987; Christensen, 1995;
Guinetet al., 1996; Trites et al., 1997; Palomares
and Pauly, 1998). A more detailed approach —
but more difficult to parameterize — calculates
the costs of Respiration (the energy used for
work that is degraded to heat), Production
(energy deposited into tissue growth, fat stor-
age, eggs, sperm, etc.), and Faeces and Urine
(energy excreted from the body) such that

Consumption = Faeces + Urine + Respiration +
Production

for an organism that is in energy balance (e.g.
Klekowski and Duncan, 1975; Stenson et al.,
1997; Winship et al., 2002). Multiplying the
mean individual consumption by population
density yields an estimate of total consump-
tion by a group of organisms.

Energy requirements are a function of
body size and assimilation efficiency of differ-
ent diets. Metabolic needs for maintenance are
a function of body weight raised to the power
of 0.70-0.75, and are lower per unit of body
mass for larger species or individuals com-
pared with smaller ones (Kleiber, 1975). How-
ever, young animals have significantly higher
rates of consumption compared with mature
individuals due to the high energetic cost of
growth. Thus, estimating consumption req-
uires estimates of animal density, assimilation
efficiency and performance (growth, activity
and maintenance), which in turn depend on
animal physiology, and on the digestibility
and other nutritional properties of the food.

On average, consumption of marine
organisms (expressed as a percentage of an

individual’s body weight per day) ranges
from about 4-15% for zooplankton, to 1-4%
for cephalopods, 1-2% for fish, 3-5% for
marine mammals, and 15-20% for sea birds
(calculated from Q/B ratios in Christensen,
1995; Trites et al., 1999, Table 8.1). However,
consumption is not constant throughout the
year, but varies with seasonal changes in
growth and reproduction (e.g. Paul et al., 1993,
1998; Winship et al., 2002). Some organisms,
such as baleen whales, may only feed for 6
months of the year, while other may fast for
periods of days or weeks (Pauly et al., 1998).
Finally, the nutritional quality and energy
content of prey may also change seasonally
(e.g. Paul et al., 1993, 1998).

Transfer efficiencies and turnover times

The number of trophic levels in marine eco-
systems averages between four and six, and
appears to increase from coastal systems to
reefs and shelves, and decline for upwelling
systems (Christensen and Pauly, 1993). The
fraction of energy that enters one trophic
level and passes on to the next higher trophic
level (transfer efficiency) typically is low
(Lindeman, 1942), and decreases with higher
trophic levels due to increased respiration
(Burns, 1989).

As a general rule of thumb, gross food
conversion efficiency decreases at higher
trophic levels (Table 8.1), and transfer effi-
ciency (assimilation or gross production at
level n divided by that at level n-1) remains
constant between trophic levels, at about
10% (Kozlovsky, 1968; Pauly and Christensen,
1995). A comparison of aquatic ecosystems
suggests ecological efficiencies of about 10%
for herbivores and detritivores, 11% for the
next trophic level, and lower efficiencies
of 7.5-9.0% at higher levels (Christensen
and Pauly, 1993). Most energy held within a
trophic level is dissipated before organisms
feeding at the next higher trophic level can
consume it. Ultimately, the amount of energy
reaching each trophic level depends on the net
primary production at the base of the food
chain and on the conversion efficiencies. Thus,
high fish catches are associated with high
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primary productivity and with fishing at
lower trophic levels (Christensen, 1996).

The turnover or residency time of energy
at each trophic level can be calculated by
dividing the biomass (total stored energy)
by net productivity (the rate at which energy
is converted into biomass). This effectively
is the time it takes energy to flow through
the ecosystem (Ricklefs and Miller, 2000).
Average turnover times in marine ecosystems
range from about 6 days for phytoplankton to
3 months for zooplankton, to 5 months for
cephalopods, 6 months for crabs and shrimp,
1 year for fish, 17 years for seals and 50 years
for whales (calculated from the inverse of
the P/B ratios in Table 8.1, Christensen,
1995; Trites et al., 1999). Upwelling systems
generally have shorter turnover times than
shelves, reefs and estuaries (Christensen and
Pauly, 1993). Longer residence times reflect
greater accumulations of energy. Turnover
times for aquatic primary production are
extremely short compared with terrestrial
systems (Ricklefs and Miller, 2000).

Food Webs and Consumption
in the Bering Sea

A considerable amount of research currently
is being focused on the eastern Bering Sea eco-
system, due largely to the decline of Steller
sea lions (1977 to present) and their listing by
the USA in 1997 as an endangered species
(Alverson, 1992; Trites and Larkin, 1996; Lough-
lin, 1998). The cause of the population decline
is not yet known, but may be related to a
decline in prey abundance caused by fisheries
or by natural changes in the ecosystem (Anon.,
1993). Food web analysis and estimates
of prey consumption are essential pieces of
information needed to resolve this issue.

Bering Sea food web dynamics

Stomach contents and biomass estimates of
fish, invertebrates, birds and mammals were
collected by the then Soviet Union during
the 1950s, and by the US National Marine
Fisheries Service since the 1970s. Food webs

constructed for the 1950s and 1980s (before
and after the Steller sea lion decline started)
suggest that the linkages between species
were the same in each era (Fig. 8.2), but that
dramatic changes occurred in the biomass of
each group and in the amount of energy pass-
ing from one group to another (Trites et al.,
1999). The mass balance ecosystem models
constructed by Trites et al. (1999) suggest that
most of the top predators (Trophic level IV)
declined from the 1950s to the 1980s, along
with a significant number of mid-trophic
level species (i.e. crabs, shrimp and forage
fishes such as herring and sandlance -
Trophic level III). Species that increased
dramatically during this period (Fig. 8.4)
included walleye pollock (level III) and large
flatfish (level IV). Pollock appear to have con-
tributed over 50% of the energy transferred at
the mid-trophic levels during the 1980s com-
pared with only 10% in the 1950s. In contrast,
pelagic fishes contributed nearly 50% of the
total Bering Sea energy flow in the 1950s.

Stomach contents of Steller sea lions in
the Gulf of Alaska suggest changes in their
diet that are consistent with stock assessments
and model predictions (Table 8.2). During
the 1950s, Steller sea lion stomach samples
contained mostly pelagic fishes (herring and
sandlance), some gadids (pollock and cod)
and no flatfish. From the 1960s to the 1990s,
however, the dietary concentration of pelagic
fishes fell, while gadids and flatfish became
more prevalent (Table 8.2).

Attempts to simulate the effects of com-
mercial fishing on the Bering Sea ecosystem
failed to explain the change in ecosystem
dynamics between the two eras (Trites et al.,
1999). Fishing could not explain the decline of
forage fish species (most of which were never
fished), nor could it explain the 60% increase
in large flatfish or the 400% increase in
pollock. Food web interactions could not
account for the magnitude of changes that
occurred in the eastern Bering Sea. Instead, it
appears that the survival of a suite of species
was favoured over another by a combination
of natural environmental changes in water
temperatures and ocean currents. This is
commonly referred to as a regime shift
(Francis and Hare, 1994; Anderson ef al., 1997;
Beamish et al., 2000; Benson and Trites, 2002)
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Fig. 8.4. Estimated trophic levels and relative biomass of species in the eastern Bering Sea during the
1980s. Black boxes indicate groups that had lower abundance in the 1980s relative to the 1950s, and
shaded boxes show species that had higher abundance in the 1980s relative to the 1950s. Major flows
of energy between the boxes are shown in Fig. 8.2 (from Trites et al., 1999).

Table 8.2. Changes in the proportion
(1970s—1980s) or probability (1990s) of major
prey types occurring in diets of Steller sea lions

in the Gulf of Alaska (%). Note that the sum of the
percentages do not add up to 100%.

Period Gadids Flatfish Pelagics
1950-1960s Few None Mostly
1976-1978 32 0 61
1985-1986 60 5 20
1990-1993 85 13 18

Source: from Merrick et al. (1997).

and suggests that the Bering Sea can exist in at
least two alternative stable states that support
suites of species at alternatively high and
low population levels (Trites et al., 1999).
Ecosystem indices from the models suggest
that the Bering Sea was more ‘mature” (sensu
Odum, 1971) in the 1950s than in the 1980s, but
is overall relatively resilient and resistant to
perturbations (Trites et al., 1999).

Pollock and/or Atka mackerel (a hexa-
gramid related to lingcod) currently dominate

the diets of Steller sea lions in the declining
populations that border the Bering Sea. This
is in sharp contrast to the diets of growing
sea lion populations in southeast Alaska and
British Columbia that contain a more diverse
array of prey (i.e. salmon, rockfish, forage
fish, gadids and flatfish). Dietary diversity
correlates with the rates of sea lion population
change (Merrick et al., 1997), and suggests that
the recovery of Steller sea lions is linked to
consuming a more diverse range of species
with higher fat (energy) contents than they
currently are obtaining.

Recent field observations of foraging
Steller sea lions suggest that they might
choose preferentially herring over pollock
(Thomas and Thorne, 2001). This is consistent
with predictions of the junk-food hypothesis,
which proposes that Steller sea lions have
declined because they have been consuming
too much pollock, which contain fewer
calories, and not enough of the fattier, high-
energy fishes (Alverson, 1992; Rosen and
Trites, 2000b).
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Estimating energy requirements

Understanding how a change in diet could
affect Steller sea lions comes from labora-
tory analysis of sea lions (digestive efficien-
cies and metabolism) and their prey (caloric
and nutritional value). For example, bomb
calorimetry analysis shows that herring
(6-11 KJ g™') has more energy per unit mass
than do salmon (5-9 kJ g!), pollock (3-5k]
g™ or squid (4-6 kJ g™) (from data compiled
by Winship and Trites, 2003). Feeding trials
with captive Steller sea lions show that
digestive efficiency (90-95% of gross energy
intake) increases with prey energy density,
while heat increment of feeding (10-20% of
gross energy intake) decreases with increas-
ing prey energy density (Rosen and Trites,
1997, 1999, 2000a). Digestive efficiency is the
proportion of usable energy within a prey,
and heat increment of feeding is the pro-
portion of energy that is burnt during the
mechanical and biochemical processes of
digesting a prey item. Thus Steller sea lions
can digest prey with higher fat content more
easily than they can digest leaner prey. It also
turns out that Steller sea lions have to burn
more of the energy contained within larger
prey to digest them than they do from smaller
meal sizes (Rosen and Trites, 1997). Thus a
Steller sea lion would have to eat an average
of 56% more pollock than herring to obtain an
equivalent amount of energy because pollock
are bigger prey, contain fewer calories and
require more energy to digest than do herring
(Rosen and Trites, 2000b).

Estimating the amount of prey that
Steller sea lions require can be determined
by incorporating estimates of diet composi-
tion, digestive efficiencies, heat increments
of feeding, activity budgets, body growth,
basal metabolism and population size into
bio-energetics models (Winship and Trites,
2003; Winship et al., 2002). They indicate
that Steller sea lions in southeast Alaska
require more food in winter and spring than
they do during summer and autumn
(~45-60% more due primarily to seasonal
changes in the energy density of the diet),
and that the average sea lion requires about
17 kg of prey day~!, or 6000 kg year. Within

different regions of Alaska, per capita food
requirements differ by as much as 24%,
depending upon the relative amounts of
energy-poor prey (gadids) versus energy-rich
prey (e.g. forage fish and salmon) that Steller
sea lions consume (Fig. 8.5, Winship and
Trites, 2003).

In 1998, the biomass of pollock and cod in
Alaska was estimated at 11.57 million t (8.98
million t pollock, 2.59 million t cod), with
an annual natural mortality of 3.56 million t
(2.68 million t pollock, 0.88 million t cod), and
a total commercial catch of 1.52 million t
(1.25 million t pollock, 0.27 million t cod)
(see Winship and Trites, 2003). Total annual
gadid consumption by Steller sea lions
for all regions of Alaska was 0.18 million t
(Winship and Trites, 2003). Thus, consum-
ption of gadids by Steller sea lions repre-
sented about 2% of the stock size, or 5%
of natural mortality or 12% of commercial
landing. Gadid consumption by Steller
sea lions appears to be small relative to
total gadid natural mortality and stock size,
which is consistent with conclusions drawn
by Livingston (1993).

Differences in the quality of prey avail-
able to Steller sea lions have consequences
on the individual, and ultimately the popula-
tion. One strategy an animal can invoke when
faced with an energy shortage is to reduce the
amount of prey they require by reducing their
energy expenditures. Captive experiments
have shown that Steller sea lions can
reduce their metabolism by an average of 31%
when food is withheld from them, which is
typical of a fasting response (Rosen and Trites,
2002). However, sea lions do not appear to
reduce their metabolism when fed smaller
meals, despite losing body mass (Rosen and
Trites, 2002). Instead, they exhibit a hunger
response, which might lead them to increase
their foraging effort in the wild. However,
increased foraging effort has an increased
energetic cost, as well as an increased
risk of exposure to predation by sharks or
killer whales.

Recently weaned young are the segment
of the population most likely to incur the
greatest cost of reduced caloric intake. Ener-
getically, a 1-year-old female must consume
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Fig. 8.5. Estimated annual food biomass requirements (thousands of t) for Steller sea lions in 1998

in seven study areas of Alaska, assuming that the summer diet was consumed all year long. Pie charts
represent the proportions of diet biomass represented by each prey species category. Diameters of the
pie charts are proportional to their respective mean food requirement estimates. Food requirements were
calculated assuming digestive efficiency and the heat increment of feeding for maintenance varied with
prey energetic density (from Winship and Trites, 2003).

about twice the relative quantity of prey com-
pared with a mature female (13% of her body
weight per day eating a mixed diet, compared
with 6% for a mature female; Winship et al.,
2002). This same yearling female would
require 9% of her body mass per day if she ate
only small schooling fish, or 17% if she ate

only gadids (Winship et al., 2002). These
energy requirements could well be twice these
values (i.e. 18-34% of body mass per feeding
trip) considering that Steller sea lions do not
eat every day, but typically fast for a day
between their 1- or 2-day feeding trips (Trites
and Porter, 2002).
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Synthesis

Combining the individual energy require-
ments with information about the changes
that occurred in the Bering Sea food web sug-
gests that the population decline of Steller
sea lions in Alaska was probably related to
the inability of young animals to acquire
sufficient energy from the low-quality prey
available to them. There is no indication of
there being a shortage of low quality prey.
However, the energetic modelling and
captive feeding studies suggest it may not
be physically possible for young Steller sea
lions to consume enough low-energy prey to
meet their daily energetic needs. Consuming
fewer calories can stunt growth and cause
reproductive failure (i.e. abortions) — symp-
toms that have been observed in Alaska over
the time that Steller sea lions have declined
(Calkins et al., 1998; Pitcher et al., 1998). A
lower nutritional plane may also increase the
susceptibility of sea lions to disease, and
increase their risk of being killed by
predators — a factor that may account for the
apparent high mortality of juvenile sea lions
(York, 1994). Mathematical modelling
suggests that killer whales could have been a
significant contributing factor in the decline
of Steller sea lions, and may now be pre-
venting the population from recovering
(Barrett-Lennard ef al., 1995).

Conclusions

The Bering Sea case study is an example of
the importance of constructing food webs
and estimating the energy requirements
of marine organisms to understand ecosys-
tem dynamics. This can only be achieved
through a combination of fieldwork, captive
studies and mathematical models - all
of which are essential tools for the responsi-
ble management of fisheries and ecosys-
tems. Food webs and energetic modelling
shed light on the consequences of removing
or adding organisms, and on the role
that humans play in shaping the dynamics
of marine ecosystems. More importantly,

they are essential techniques for recognizing
what our marine ecosystems once were, what
they are currently and what they might be in
the future.
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