'.) Check for updates

The Canadian Journal of Statistics 327
Vol. 50, No. 1, 2022, Pages 327-356

La revue canadienne de statistique

Modelling multi-scale, state-switching
functional data with hidden Markov models

Evan SIDROW!®, Nancy HECKMANT?, Sarah M. E. FORTU[\IEz,I
Andrew W. TRITES3#4, lan MURPHY?, and Marie AUGER-METHE"4

lDepartment of Statistics, University of British Columbia, Vancouver, British Columbia, Canada V6T 174
’Marine Mammal Research Unit, University of British Columbia, Vancouver, British Columbia, Canada
V6T 174

3Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 174
“Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia,
Canada V6T 174

5Department of Biostatistics, University of Florida, Gainesville, FL 32611, U.S.A.

Key words and phrases: Accelerometer data; animal movement; biologging; diving behaviour;
hierarchical modelling; killer whales; state switching; statistical ecology; time series.

MSC 2020: Primary 62MO05; secondary 62P12.

Abstract: Data sets composed of sequences of curves sampled at high frequencies in time are increasingly
common in practice, but they can exhibit complicated dependence structures that cannot be modelled using
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observations from a hidden Markov model. The distribution of each curve is then defined by another
fine-scale model that may involve autoregression and require data transformations using moving-window
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intricate dependence structures. As a case study, we use this framework to model the fine-scale kinematic
movements of a northern resident killer whale (Orcinus orca) off the western coast of Canada. Through
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1. INTRODUCTION

Biologging technology now provides researchers with kinematic data collected almost continu-
ously in time (Hooten, King & Langrock, 2017). The collection and analysis of data from devices
such as accelerometers have brought new insights to research tasks ranging from monitoring
machine health (Getman et al., 2009) to understanding physical activity levels in children (Morris
etal., 2006). The study of animal movement in particular has been transformed by tracking
devices that record kinematic information in a variety of environments (Jeanniard-du Dot et al.,
2016; Borger et al., 2020). Tags can record over 50 observations per second, resulting in time
series containing millions of observations over the course of several hours. These data contain
a wealth of information about human and animal behaviour, but modelling these large data sets
poses a challenge for statisticians and biologists. One particular difficulty is that simultaneous
coarse- and fine-scale processes are often reflected in high-frequency data, and each scale can
exhibit a unique and complicated structure.

Biologging data are frequently modelled as a set of curves and analyzed using methods for
functional data analysis, or FDA (e.g., Ramsay and Silverman, 2005). For example, Morris et
al. (2006) views a child’s activity level as a set of daily curves where metabolic activity is a
function of time. Similarly, Fu & Heckman (2019) views the dive profile of a southern elephant
seal (Mirounga leonina) as a set of dive curves. Dive amplitude and phase variation are used for
classification into “dive types.”

FDA was originally developed to process curves assumed to be independent replicates (i.e.,
there is no between-curve dependence). Within-curve, fine-scale structure is not usually incor-
porated in FDA models. However, sets of curves often exhibit complex sequential dependencies,
both between and within curves. This is especially the case for biologging data (Leos-Barajas
et al.,2017). On a coarse scale, the dive profiles of marine animals show a discrete number of dis-
tinct dive types, where the sequence of dive types exhibits state-switching behaviour (Tennessen
et al., 2019a). On a fine scale, these profiles can display bouts of short-term periodicity within
each dive (Adam et al., 2019). Fine-scale periodicity nested within a coarser state-switching
process is also common in fields such as machine health (Xin, Hamzaoui & Antoni, 2018; Lucero
et al., 2019) and speech recognition (Juang & Rabiner, 1991).

Some FDA models account for between-curve dependence that occurs when multiple curves
arise from separate groups of individuals, but these models are inadequate when modelling
certain kinds of time dependencies. For example, previous studies have used multi-level models
with random effects to model variation between and within individuals in the daily activity
levels of children (Morris et al., 2006) or in the menstrual cycles of adults (Brumback & Rice,
1998). More recent work involving multi-level models includes that of Crainiceanu, Staicu
& Di (2009), Di et al. (2009), and Chen & Miiller (2012). However, the first two papers do
not account for temporal between-curve dependence and the third article’s model of temporal
dependence assumes that curves evolve smoothly in time. This is not appropriate in many
biologging applications, where behaviours often change suddenly between a discrete number of
types. In addition to multi-level models, FDA researchers have used functional time series to
model dependence in a sequence of curves. Functional time series extends the ideas of classic
time series to model the evolution of one curve into the next (Kokoszka & Reimherr, 2018), but
does not account for sequences of time-series curves whose distributions are determined by a
discrete number of well-defined hidden states.

Traditional FDA techniques similarly fall short when modelling complicated within-curve
data. In particular, within-curve structure is usually modelled by a generic smooth mean function
and a covariance function (Yao, Miiller & Wang, 2005) or with random regression (Rice &
Wu, 2001). However, time-series data exhibiting both sharp behavioural changes and periodic
fine-scale structure are difficult to model with these classical FDA techniques.
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Our goal is to identify and describe discrete behavioural states at multiple scales within
functional data (e.g., coarse-scale curve types and fine-scale behavioural states) and to model
the dependence structure between those states. To accomplish this, we turn to the field of
animal movement modelling (Hooten, King & Langrock, 2017), where one of the most prevalent
techniques of late is the hidden Markov model, or HMM (Patterson et al., 2017; McClintock
etal., 2020). HMMs interpret animal movement data as arising from a Markov chain on a
discrete number of behavioural states, allowing biologists to infer the underlying behaviour of
an animal from sequential observations of its position. While ubiquitous in ecology literature,
HMMs have seen little use in nonparametric functional modelling, with a few notable exceptions.
In particular, Langrock et al. (2018) takes a nonparametric approach to model the distributions of
HMM observations with B-splines, while de Souza & Heckman (2014) and de Souza, Heckman
& Xu (2017) use HMMs to model state-switching behaviour within functional data. However,
none of these papers accounts for temporal correlation taking place on multiple scales.

While useful, HMM:s alone are also not sufficient to model high-frequency time-series data for
three primary reasons. First, classical HMMs fail to model simultaneous behavioural processes
that occur at different time scales (e.g., both between and within curves). To address this issue,
statistical ecologists have employed hierarchical HMMs (HHMMs) (Leos-Barajas et al., 2017,
Adam et al., 2019), which model both scales with conditionally dependent HMMs. Second,
HMMs assume that subsequent observations are independent given an underlying hidden state
process, but this is often not the case when observations are taken at extremely high frequencies.
Several solutions have been proposed in the ecology literature, including the hidden movement
Markov model (Whoriskey et al., 2016) and the conditionally autoregressive HMM, or CarHMM
(Lawler et al., 2019). Third, traditional HMMs, CarHMMs, and HHMMs cannot easily capture
complicated dependence structures on short time scales. For example, Adam et al. (2019) did not
capture the fine-scale periodic swimming patterns of horn sharks (Heterodontus francisci) using
a traditional HHMM. Heerah et al. (2017) successfully used Fourier analysis within an HMM
to account for daily behavioural cycles in marine mammals. Fourier analysis has previously
been used with accelerometer data to explain animal behaviour (Fehlmann et al., 2017; Shorter
et al., 2017). Thus, incorporating Fourier analysis into the structure of an HMM appears to be a
promising approach to account for fine-scale periodic structures in biologging data.

We combine these existing methods from statistical ecology literature in novel ways to
classify and describe state-switching behaviours in functional data while accounting for complex
temporal dependence. The resulting methods make up a tool box that can be used to build
arbitrarily complex hierarchical models to explain multi-scale functional and time-series data
with intricate dependence structures. We begin in Section 2 by describing HMMs as well as two
variants, CarHMMs and HHMMs, and discuss how summary statistics over moving windows
can handle fine-scale dependence structures. We also show how these methods can be combined
to analyze increasingly complex data. In Section 3, we fit several candidate models to data from
a killer whale (Orcinus orca) from the threatened northern resident population off the coast of
British Columbia, Canada. Section 4 details a simulation study based on these candidate models,
and in Section 5 we discuss our results.

2. MODELS AND PARAMETER ESTIMATION

Consider a sequence of T curves, where curve ¢ is characterized by a curve-level (or coarse-scale)

observation Y, as well as a sequence of 77" within-curve (or fine-scale) observations Y. Namely,

Yy = {Yt*l, ey Yt*T* } is made up of fine-scale quantities derived from curve ¢ and indexed by #*.
. T

Both Y, and Y7, can be either vectors or scalars. We call the sequence of coarse-scale observations

Y = {Yl e YT} and the collection of all fine-scale observations Y* = {Y*, ey Y;} We assume
that the curves Y/, ..., Y, are indexed according to the order in which they are observed in time,
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but the T observations need not be equally spaced in time. To develop our model for this data,
we detail the structure of a traditional HMM followed by three variations that generalize its base
structure. We then show how each of these generalized HMMs can be synthesized to form a
wide variety of more complicated models.

2.1. HMMs as a Base Structure

HMMs describe state-switching Markovian processes in discrete time and are the core structure
we use to model both Y and Y*. For simplicity, we focus on Y to introduce the model. An
HMM is composed of a sequence of unobserved states X = {X], ,XT} together with an
observation sequence Y = {Yl, ey YT}, where X, is associated with the observation Y,. The
Y;s are often referred to as “emissions” and the index ¢ typically refers to time. The X,s form
a Markov chain and can take integer values between 1 and N. Their distribution is governed
by the distribution of the initial state X; and an N X N transition probability matrix I', where
I';; = Pr(X,;, = j | X, = i). We consider only time-homogeneous Markov chains, meaning that I"
does not depend on time. We assume that X; follows the chain’s stationary distribution, which is
denoted by an N-dimensional row vector 6, where §; = Pr(X; = i). A Markov chain’s stationary
distribution is determined by its transition probability matrix via 6 = 61", where Z .1 6; = 1.The
distribution of an emission Y, conditioned on the corresponding hidden state X, does not depend
upon any other observation or hidden state. If X, = i, then we denote the conditional density or
probability mass function of ¥, as f@(-;0®) or simply f@(-), where 8% is a state-dependent
parameter describing the emission distribution.
The joint likelihood of both the parameters and the hidden states is given by

T
Lypm, 0.T5y) = 5X1 f(x1) 9()(1) HFXt lx,f(xt) ;0(":)) ’ 1)
=2

but it is also tractable to sum over all possible values of x to obtain

T

Liam(0.T53) = 8P(v1;0) [ [ TPG: )1y, (@)
t=2

where 1, is an N-dimensional column vector of 1’s and P(y,; #) is an N X N diagonal matrix with
the (i, i)th entry £ (y,; 8?). This expression can be evaluated in O(T) time using the well-known
forward algorithm (Zucchini, Macdonald & Langrock, 2016).

We take a frequentist approach in this article, which involves obtaining maximum likelihood
estimates {6,1"} from Equation (2). The estimated probability of each hidden state lfr(X, =i|
Y =y) can then be calculated using {6,1"} and the forward—backward algorithm (Zucchini,
Macdonald & Langrock, 2016). Alternatively, it is reasonable to use a Bayesian approach, where
Equation (1) is combined with a prior distribution to obtain a posterior distribution over X, 6,
and I'. This posterior distribution can be sampled from using methods such as sequential Monte
Carlo (Douc et al., 2011), Markov-chain Monte Carlo (Scott, 2002), or variational inference
(Foti et al., 2014).

Following Leos-Barajas et al. (2017), we re-parameterize the N X N transition probability
matrix I such that the entries of the matrix are forced to be non-negative and the rows sum to 1:

exp(r;,)
>N explny)

ij =
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Ficure 1: Dependence structure of a standard HMM (top), CarHMM (middle-top), HHMM

(middle-bottom), and HMM-DFT (bottom). Hidden state sequences are denoted by X on the

coarse scale and by X* on the fine scale. Observations are denoted by Y on the coarse scale

and by Y™ on the fine scale. The coarse-scale process is not included in the HMM-DFT because

moving-window transformations often only apply to fine-scale data. The fine-scale observations

of the HMM-DFT are transformed using a moving window and denoted by ¥* with corresponding
fine-scale hidden states X*.

where i, j = 1,..., N and g; is set to zero for identifiability. This formulation simplifies likelihood
maximization by removing constraints in the optimization problem. We assume there are no
covariate effects, but similar to the work of de Souza, Heckman & Xu (2017) for independent
states and Adam et al. (2019) for Markovian states, one could incorporate covariates into I" by
setting #;;(z,) = ﬂ;z, for i # j, where z, is a column vector of known covariates and f;; is a
column vector of unknown regression coefficients. For simplicity, we will continue to use I" in
our notation, suppressing the re-parameterization in terms of 7. Figure 1 shows the dependence
structure of an HMM.

2.2. Relaxing Conditional Independence with the CarHMM

The CarHMM (Lawler et al., 2019) is a generalization of the HMM, which explicitly models
autocorrelation in the observation sequence beyond the correlation induced by the hidden state
process. Like the traditional HMM, the CarHMM is made up of a Markov chain of unobserved

DOI: 10.1002/cjs. 11673 The Canadian Journal of Statistics / La revue canadienne de statistique



332 SIDROW ET AL. Vol. 50, No. 1

states {X,..., Xy}, each taking integer values between 1 and N. The CarHMM also has a
transition probability matrix I" and initial distribution 6 equal to the stationary distribution of
I'. Unlike the traditional HMM, the CarHMM assumes that the distribution of Y, conditioned
on {X;,....X;} and {Y;,...,Y,_;} depends on both X, and Y,_; rather than only X,. The
first emission Y, is treated as a fixed initial value that does not depend upon X;. We denote
the conditional density or probability mass function of Y,, given Y,_; =y,_; and X, =i, by
FOC | y,_1:0D), or simply fO(- | y,_;). As a concrete example, if Y, is a scalar, then one may
assume that Y, given X, = i is normally distributed with parameters 6 = {4, 60, ¢(i)}, where

E(Y, 1Y =y . X, =i) ="y, + (1-9Y) u®, (3)

and
% (Yz 1Yo =y X, = ’) ( (l)) “)

A CarHMM following Equations (3) and (4) can be viewed as a discrete-time version of a
state-switching Ornstein—Uhlenbeck process (Michelot & Blackwell, 2019). This follows in the
same way that an AR(1) process is the discrete-time version of a traditional Ornstein—Uhlenbeck
process.

As above, the likelihood of 8 and I" corresponding to the CarHMM can be calculated using
the forward algorithm. If y is the sequence of observations, then

T

Leam(0,T5y) =6 HFP (v 15213 0) 1y,
=2

where P(y, | y,_;;6)is an N x N diagonal matrix with the (i, 7)th entry equal to £ (y, | y,_1:69 )
Figure 1 shows a graphical representation of the dependence structure of the CarHMM.

2.3. Incorporating Multiple Scales with the HHMM

An HHMM accounts for processes occurring simultaneously at different scales by modelling both
the coarse-scale process and fine-scale process with either HMMs (Leos-Barajas et al., 2017,
Adam et al., 2019) or CarHMMs, as defined in Sections 2.1 and 22. Recall that {X,, ..., X} is

an unobserved Markov chain with N possible states, and {Y}, ..., Y} is the set of corresponding
observations with state-dependent parameters 09 for i=1,...,N. In the hierarchical setting,
each state X, also emits a sequence of fine-scale unobserved states, X7 = {Xt*l’ s X } In
turn, X* emits a sequence of fine-scale observations Y = tl’ cees Y,,T;x}. For each curve ¢,

the parameters of the HMM (or CarHMM) describing the fine-scale process {X* Y*} depend

on the value of X,. If X, =i, then X", represents one of N*® possible fine-scale behaviours
associated with the coarse-scale hldden state i. Furthermore, the components of X* make up a
Markov chain with an N*? x N*? transition probability matrix '*) and an 1n1t1al distribution
6*® which we assume is equal to the stationary distribution of the chain. The distribution
of Y*ﬂ, given Yt o y:‘ﬁ_l, X:t* =", and X, =i, is governed by the parameter 6*C") and
has g density or probability mass function denoted by f *(l”*)(' Iyit*_l;e*(”’*)), or simply
f *(”’*)(- | y;kt*_l). We denote the set of fine-scale emission parameters corresponding to X, = i

by 9*0) = {9*(1',1)’ U } In summary,

1. {Y,X} follows a (Car)HMM with " € RVXV,
2. (Y, | Y_; =y,_1,X, = i) has the density fO( | y,_;;09),
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{Y*,X* | X, =i} follows a (Car)HMM with [0 € RV N ang

(Yt Y =Y X =X, = i) has the density f*@) (- |yzt*_1;0(i’i*)).

Given the coarse-scale hidden state sequence X, the T+ 1 sets {X*, Y;‘ } s {X*, Y;}, and
{Y,,..., Yy} are assumed to be independent of one another.

Forcing certain parameters to be shared can reduce the complexity and increase the
interpretability of an HHMM. For example, since f*¢") depends on both X, = i and X =i,
the distribution of Yt*t* is defined by the pair (X,,X* t,ﬁ) However, in our killer whale case study
(see Section 3), we take N*@ = N* for all i and share the fme scale emission parameters across
the N coarse-scale hidden states (i.e.,0*!) = ... = g*™) = g*C1) forall i* = 1,...,N*). As
a result, the distribution of the fine-scale observation Y, does not depend on X,, but instead is
defined exclusively by X, ( ( ) for notational consistency)

Because of the ncstcd structure of the HHMM, it is straightforward to extend the forward
algorithm and sum over all possible coarse-scale hidden states X and all possible fine-scale

hidden states X* in the likelihood. Let y = {y,, ...,y } be the sequence of observed coarse-scale
emissions and y* = {yT, s y;} be the collection of 7" observed fine-scale emission vectors. In
addition, let 6* = {6*(1), N )} denote the collection of all fine-scale emission parameters,

and let [ = {F *D ,F*(N)} denote the collection of all fine-scale transition probability
matrices. The likelihood of the observed data is then

T

Lonant (0,07, 0.1%,5) =8P, (y1,37: 0.0, T7) [ [ TP, (o3} 1 921:60.0%.T%) Ly, (5)
=2

where P, (y,, ¥ | y,_1; 0,0, ") isan N X N diagonal matrix whose exact structure depends upon
the coarse- and fine-scale models. If the coarse-scale model is an HMM, P, (y,, yT; 6,0%,I"") and
P,y | y,_1:0,0*.T%), fort > 2, both have (i, i)th entries equal to FOO)Lene (9*(i), =, yf)
If the coarse-scale model is a CarHMM, Pm(yl,yf;e, 0*, 1) has its (i,i)th entry equal to
Liine (0*(i),F*(i);y*l‘) and P, (v | y,_1:0,0%,T"*), for t>2, has its (i,i)th entry equal to
FOO, |y L (070, T*D; y*) . The fine-scale likelihood Ly, corresponds to the likelihood
of the fine-scale model, which can be either a CarHMM or an HMM. Figure 1 displays the
dependence structure of an HHMM.

24. Transforming Fine-scale Observations with the HMM-DFT

In many applications where data are collected at high frequencies, intricate dependency structures
arise within the fine-scale process that cannot be adequately modelled with the HMM variations
described thus far. To handle these additional fine-scale structures, we recommend replacing

ve={v...
t 1,1’
To maintain the temporal structure of the fine-scale process, local summary statistics can be
calculated from a moving window with the stride length & over the elements of ;. Stride length
refers to the distance between the first element of consecutive windows, so a stride length of A
implies that the first window starts at Y|, the second at Yt’"1 e and so on. Subject matter experts
are often required to determine the spec1f1c summary statistics employed as well as the optimal
window size and stride length of the moving window. Larger stride lengths result in a larger
loss of information but also reduce the dimensionality of the fine-scale process, which allows
for faster model fitting. In addition, setting the stride length equal to the window size avoids

artificial residual correlation arising from overlapping windows.

s Y;‘T*} with relevant statistics that summarize any non-Markovian behaviour.
Tt
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We are interested in fine-scale summary statistics that are interpretable to practitioners and
can effectively differentiate between fine-scale behavioural states. As a result, we use the discrete
Fourier transform (DFT) of a moving forward window with a width of 4 and a stride of /2 across Y}

27
DFT{ LrEe zt*+h }(k) Z tt*+nexp(_7k”> (6)

fort*=1,h+1,2h+1,...and k =0,1,...,h — 1, where i = y/=1. If Y7, is a vector, then the
DFT is taken component wise. We omit the final window if r* + h —1 exceeds T, denote the
total number of windows by T* and index the windows with 7 = 1, . T:‘ Next, we calculate

the transformed observations Yt* = {A*I*, W;”t* }

h
AT =%Z¥ The—tyen A4 W = ZHDFT{ LR =141 zht«}(k)H )

where @ < h — 1 is a problem-specific tuning parameter corresponding to the maximum recorded

frequency within each window. In words, Aj;* is the average value of ¥} within window 7*

and W[’}* is the squared two-norm of the component of the window that can be attributed to
frequencies between one and @ periods per window. More intuitively, W:}* corresponds to the
“wiggliness” of the fine-scale data within curve ¢ and window 7*.

After performing this transformation, the entire model must be redefined since the fine-scale
HMM (or CarHMM) directly models the distribution of the summary statistics Y * rather than

the discretized curve Y. Because Y © exists on a coarser scale than Y, there are only T*

unobserved states assomated with Y = { zT* } We denote these unobserved states as
Tt

01

={X e XL }. The fine-scale transition probability matrices I*(” and probability density
>t

functions f*@") correspond to 5(* and Yt* rather than XJ" and Y7, as do all fine-scale model
assumptions (e.g., conditional independence autoregresswe structure between observations,
etc.). Fine-scale model selection and validation should therefore be adjusted accordingly.

The likelihood of this model is identical to that of the original HMM or CarHMM defined
in Sections 2.1 and 22, but Y* is replaced with ¥* and X* is replaced with X*. To clearly
differentiate the models, we refer to an HMM with Y* as observations and X* as hidden states as
an HMM-DFT. Figure 1 displays the dependence structure of a fine-scale HMM-DFT.

Replacing Y7 with summary statistics results in a loss of information since it involves
substituting infinite-dimensional curves with a finite-dimensional representation. While we
are primarily interested in classifying and describing coarse- and fine-scale behaviour, some
researchers may be less interested in interpretability and more interested in predicting future
functional data. To this end, Aue, Norinho & Hoérmann (2015) and Gao, Shang & Yang (2019)
both use functional principal component analysis (FPCA) and derive bounds on the reconstruction
error caused by dimension reduction. While these papers do not account for state-switching
behaviour between curves or windows, deriving similar error bounds for FPCA within an HMM
framework appears to be a promising direction for future research.

2.5. Generalized Hierarchical Markov Models

Traditional HHMMs treat both the coarse-scale and the fine-scale processes as realizations of an
HMM or CarHMM. However, the fine-scale observations of a particular dive Y ;‘ can be modelled
using a large variety of parametric models that admit easy-to-compute likelihoods or penalized
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likelihoods. As such, the fine-scale HMM likelihood term Ly, in Equation (5) can be replaced
by the likelihood of a general fine-scale model whose parameters depend upon the coarse-scale
hidden state. For example, Bebbington (2007) and Borchers et al. (2013) investigated data sets
with count onsets as observations, so they used variations of a Poisson process as their fine-scale
model. If the fine-scale model is a simple Poisson process, then this approach is equivalent to a
Markov-modulated Poisson process (Fischer & Meier-Hellstern, 1993). The fine-scale process
can also be modelled similarly to Langrock et al. (2018), which uses B-splines to model the
emission distribution of an HMM. This nonparametric approach uses a penalized likelihood
term that can easily replace the usual fine-scale likelihood term in Equation (5). Another class
of fine-scale models is the set of continuous time methods such as the continuous-time HMM
(CTHMM) (Liu et al., 2015) and the state-switching Ornstein—Uhlenbeck process (Michelot &
Blackwell, 2019). A CTHMM may be appropriate if observations are not equally spaced in time
(Liu et al., 2015). Xu, Laber & Staicu (2020) modelled high-frequency biologging accelerometer
data from individuals by incorporating a CTHMM into a hierarchical model similar to ours.
However, they assumed that individuals are partitioned into subgroups a priori, whereas we use
an HMM to infer coarse-scale hidden states.

These examples include a few of many fine-scale models that can act as initial building blocks
in a practitioner’s toolbox to construct increasingly complex hierarchical models. A myriad of
possible models can be built using this framework, but these models can quickly become
complicated and computationally expensive to fit. Therefore, models should be constructed with
care to achieve an adequate fit to the data while avoiding overfitting and high computational
Costs.

3. KILLER WHALE CASE STUDY

To illustrate the process of constructing a model using these building blocks, we analyze the
diving behaviour of a northern resident killer whale in Queen Charlotte Sound, off the coast of
British Columbia, and construct several candidate models to categorize and describe its diving
behaviour.

Understanding animal behaviour is important for conservation efforts, as environmental
changes caused by anthropogenic activity can directly impact animal behaviour (Sutherland,
1998). HMMs have been used to understand how diving behaviours of various species are
affected by disturbances (e.g., DeRuiter et al., 2017; Isojunno et al., 2017). For killer whales,
we are interested in categorizing different diving behaviours and identifying potential foraging
dives. Northern resident killer whales feed almost exclusively on calorie-rich Chinook salmon
(Oncorhynchus tshawytscha) (Ford & Ellis, 2006), which typically occur deeper and are less
numerous than smaller types of salmon (Ford et al., 2009). Northern resident killer whales
therefore must expend significant amounts of energy to capture Chinook salmon (Williams
& Noren, 2009; Noren, 2011; Wright et al., 2017). Acceleration data can be used to estimate
an animal’s energy expenditure (Green et al., 2009; Wilson et al., 2019), but the animal’s
behavioural state must be accounted for in order to obtain accurate estimates (Jeanniard du
Dot et al., 2016). Therefore, understanding both the behavioural state of the killer whale and
the distribution of acceleration within each behavioural state is needed to determine the true
energetic requirements of the animal.

3.1. Data Collection and Preprocessing

The data we use were collected on 2 September 2019 from 12:49 PM to 6:06 PM PDT, and
consist of depth and acceleration over time. Observations were collected at a rate of 50 Hz using
a CATS biologger (Customizable Animal Tracking Solutions, www.cats.is). Acceleration was
measured in three dimensions which, together, represent the complete range of movement of
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Ficure 2: Dive depth (top panel) and three-dimensional acceleration (bottom three panels) from

a killer whale over approximately 5h. An exact physical interpretation of each component of

acceleration is difficult due to variations in tag orientation. There are data gaps occurring from

around hours 1.5 to 1.8 and from around hours 3.2 to 4.5. Both data gaps are excluded from
analyses.

an animal (forward/backward, upward/downward, and right/left). Tri-axial acceleration readings
are common in these types of tags and are often used to infer animal behaviour such as foraging
(Fehlmann et al., 2017; Wright et al., 2017; Cade et al., 2018). The act of attaching and detaching
the tag caused anomalous behaviour before 1:20 PM and after 6:00 PM, so observations taken
during these time periods are ignored. There were also periods of time when the tag failed to
record observations, resulting in data gaps between 2:25 PM and 2:37 PM and between 4:07 PM
and 5:07 PM. To preprocess the data, we smooth the depth and acceleration curves by taking a
moving average within a window of 1/10 of a second. We then define a killer whale “dive” as
any continuous interval of data that occurs below 0.5 m in depth and lasts for at least 10 s. Data
are preprocessed in part with the divebomb package in Python (Nunes, 2019). The preprocessed
data contain a total of 267 dives, all of which are displayed in Figure 2. Each dive is treated
as one curve, and the sequence of dives makes up the coarse-scale process. Specifically, the
observed coarse-scale observations y = {yl, s y267} make up a sequence of dive durations in

seconds, and the coarse-scale hidden states x = {xl, ,x267} represent the corresponding dive

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs. 11673



2022 MULTI-SCALE, STATE-SWITCHING FUNCTIONAL DATA WITH HMMS 337

types. The fine-scale observations for dive ¢ are measured in units of m/s> and are contained

in y* = {y:"l, S T*} The fine-scale hidden states of dive 7, x* = {xt s ,xiTj}, represent

the subdive behav10ura1 states of the killer whale. The collection of all acceleration data is
denoted by y* = {y’l‘, ,y§67} and the collection of all unknown subdive behaviours is denoted

by x* = {x]” ,x;m}.

3.2. Model Definition and Selection

The primary goal of this case study is to jointly estimate the dive types and subdive behaviours of
this killer whale, so we only consider models with both a coarse-scale and a fine-scale component
to describe the kinematic data. Defining a suitable hierarchical model involves selecting an
appropriate number of hidden states, model structure, and set of emission distributions for both
the coarse- and fine-scale observations.

We do not use information criteria to select the number of dive types N since these
metrics tend to overestimate the number of behavioural states in biological processes (Pohle
etal.,, 2017). We instead plot the duration of each dive versus the duration of the dive
preceding it (y, vs. y,_; for ¢t >2). This type of visualization is known as a lag plot. If
the emission distributions of the hidden states are well separated, a lag plot should reveal
N distinct patterns, where each pattern corresponds to one dive type (Lawler et al., 2019).
This is unfortunately not the case for our killer whale data, as there is one cluster of data
centred at approximately y, =y,_; = 30 s. However, longer dives appear to be characterized
by bouts of less “wiggly” behaviour in the acceleration data compared to shorter dives, so
we choose N = 2 to differentiate these dive types. The absence of a more principled method
to select N highlights the importance of model validation techniques in lieu of information
criteria (see Section 34). Lag plots reveal no significant autocorrelation between dive duration
observations (see Figure S1 in the Supplementary Material A), and visual inspection shows
no obvious complicated dependence. Therefore, we select a simple HMM to model the
coarse-scale process since neither a CarHMM nor a moving-window transformation is called
for. Given that dive ¢ is of type i, we assume that the dive duration Y, follows a gamma
distribution with unknown parameters u? and ¢@: E(Y, | X, =i)=u® and V(Y, | X, =)
= (a(i))z. This is consistent with previous studies, including Leos-Barajas et al. (2017).

We then select a model corresponding to the fine-scale observations of acceleration. Similar
to the coarse model, we rely on lag plots and visual inspection to select N* = 3 subdive states.
Although N* is selected heuristically, we test the validity of this model in Section 34. In contrast
to the coarse-scale observations, the fine-scale acceleration data exhibit significant sinusoidal
behaviour. Thus, we transform each fine-scale observation sequence y; into 7 using Equation (7)
with a window size of 2 = 100 (2 s) and a maximum frequency of @ = 10 (5 Hz). We then have

that y* = {a o> w* s } where Zz*~* is a three-dimensional vector of component-wise average

acceleration and W7, is a scalar descrlbmg the “wiggliness” of a particular window. Even after
transformlng the raw acceleration data, there is still strong autocorrelation within each component
of a7, (see Figure S1 in the Supplementary Material A). Therefore, we choose a CarHMM as
the flne scale model.

We then select the specific emission distribution of 17 * . for all dive types and subdive states.

First, we assume that W* and all three components of A* - are independent of one another
when conditioned on the dlve types and subdive states. To reduce model complexity, we also
assume that the three sets of fine-scale emission parameters are shared across the two dive
types (ie., @) = g*@) = g for i* = 1,2,3). This implies that the subdive states within
dive type 1 have the same interpretation as those within dive type 2. To specify the emission

distribution of Afz*’ consider the sequence {A:‘ Iy N T*} for a particular dive ¢. We assume
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that each of the three components of this sequence is normally distributed as in Equations (3)
and (4), and we assume that all components are independent of one another when conditioned

on the subdive states 5([* = {5(;"1, ’Xz*T* } Each component is assumed to have its own
’ Tt

mean and variance parameters, but all components share the same autocorrelation parameter.
Thus, the distribution of A;“;* given Xt*;* = i* has the parameters /1:("' ) e R3, 0':("’ ) e R3 , and

d);("i*) € [0, 1]. To specity the emission distribution of VV:‘;*, we assume that, given XI*?* =",

(-, i)

Wt*?* follows a gamma distribution parameterized by its mean u and standard deviation

w
6;"’ ) In addition, Wl*l e Wz*r* are assumed to be independent of one another given the subdive
’ Tt
state sequence {X,], .6 T*}. We do not include W*,,  in the distribution of W¥. because
, oy t,i*—1 LI

the autocorrelation evident from the lag plot is not severe and may be explained by subsequent
observations occurring within the same subdive state.

In total, the parameters to be estimated are the transition probability matrices I" and
= {F*(l),l"*(z)}, the coarse-scale emission parameters 6 = {;4(1),6(1),/4(2),5(2)}, and the

fine-scale emission parameters 6* = {0*(”1),9*('*2),0*('*3)}, where 0+ = {ﬂz("i*),az("i*),

d)z("m, y;é"i*),a;ké"i*)}. Recall that 6*C) is the set of parameters describing the distribution
of ?:i* conditioned on Xt*t* = i*. We refer to this final model as the CarHHMM-DFT since
it includes a CarHMM, HHMM, and DFT-based transformation. The likelihood of this model
is easily calculated using the forward algorithm and can be maximized with respect to the
parameters above (see Appendix for details). Figure 3 shows the dependence structure of the full

CarHHMM-DFT.

\
~
\

%

@ Subdive (1/2 Hz)

FiGURE 3: Graphical representation of the CarHHMM-DFT used in the simulation and case
studies. The type of dive ¢ is denoted by X, and Y, represents the associated dive duration. The
raw acceleration vector associated with dive 7 and time stamp #* is denoted by Y;f - The subdive
state of the killer whale during dive ¢ and window 7* is denoted by 5(;}*, and the corresponding

transformed observation is denoted by f’l*?*.
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In addition to the CarHHMM-DFT, we consider three variations for comparison. As in the
full model, each of the following models assumes that all components of ?r*i* are conditionally
independent of one another given the dive types and subdive states: ’

1. An HHMM-DFT, which models the coarse-scale observations with an HMM and transforms
the fine-scale observations using Equation (7) but models 17;}* as emissions from a simple
HMM rather than a CarHMM;

2. A CarHHMM, which models the coarse-scale observations with an HMM, transforms the
fine-scale observations using Equation (7), and models A*t as emissions of a CarHMM;

3. A CarHMM-DFT, which models the coarse-scale observations as an independent and identi-
cally distributed sequence of dives, transforms the fine-scale observations using Equation (7),
and models 17:;* as emissions of a CarHMM.

Each of the three candidate models above leaves out one important aspect of the full
CarHHMM-DFT: the HHMM-DFT assumes there is no autocorrelation between fine-scale
observations; the CarHHMM does not incorporate “wiggliness” (VV:}* ); and the CartHMM-DFT
lacks a hierarchical structure and assumes that there is only one dive type.

We estimate the parameters of all four models using the data shown in Figure 2 and direct
likelihood maximization using the SciPy package in Python (Virtanen et al., 2019). Each model
is fit 100 times using random initializations, and we keep the parameter estimates corresponding
to the maximum likelihood of each optimization routine (Zucchini, Macdonald & Langrock,
2016). Likelihood maximization is performed on the Cedar Compute Canada cluster with one
CPU and 8 GB of dedicated memory. Most but not all initializations converge to the same
parameter estimates, highlighting the need to perform multiple optimizations with a variety of
initial guesses. Plots of the likelihood surface near the maximum likelihood estimates are shown
in Section 2 of Supplementary Material A.

3.3. Case Study Results

We first report results from the full CarHHMM-DFT in detail and assess the quality of the fit.
We then compare these results with those from the other candidate models.

The coarse-scale parameter estimates suggest that the killer whale has at least two distinct
dive behaviours (see Table 1 and Figure 4). Dive type 1 corresponds to shorter and shallower
dives, which likely reflect resting, travelling, and, to a lesser extent, searching for prey. Dive type
2 is longer and deeper and may be associated with behaviours such as hunting (Tennessen et al.,
2019a), but it is unclear whether any of the dives in this study are successful foraging dives. No
dive in this data set has a maximum depth greater than 30 m, while Wright et al. (2017), in a
study of killer whales in Johnstone Strait, found that most prey captures occur at depths deeper
than 100 m. However, the killer whale studied here was tagged north of Johnstone Strait in
Queen Charlotte Sound, and unpublished data collected by the authors suggest that prey-capture
events can occur near the surface. Dive type 2 could also be associated with behaviours such as
socializing, which can take place several meters below the surface (Tennessen et al., 2019a).

The means of “wiggliness” (W* ) associated with each subdive state are separated by an
order of magnitude (see Table 1 and Figure 4). Subdive state 1 has the smallest mean corre-
sponding to W* and the smallest standard deviation corresponding to A;}*. It also has the

highest autocorrelatlon in A* . This implies less overall activity and more consistent acceleration
compared to the other subdlve states. Subdive state 2 has a mean “wiggliness” one order of
magnitude higher than that of subdive state 1 and its acceleration has about twice the standard
deviation compared to subdive state 1. The autocorrelation of acceleration is also slightly lower
than in subdive state 1. We therefore hypothesize that subdive state 2 corresponds to fluking
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TaBLE 1: Estimates and standard errors for the parameters of the distribution of dive duration (Y,),

acceleration (A, ), and “wiggliness” (W~ ) of the killer whale kinematic data using the full

CarHHMM-DFT.
Dive type/ Parameter estimate
Feature subdive state J7i 6 ¢
Dive duration (s)—Y, 1 27.342 +0.633 10.961 + 0.560 —
2 127.548 + 11.341 63.888 +9.032 —
x-Acc. (m/s?)— (A[*j* )X 1 0.449 + 0.030 0.039 +0.001 0.968 + 0.002
2 0.210 +0.012 0.096 + 0.002 0.829 = 0.007
3 0.232 +0.035 0.296 + 0.010 0.607 + 0.023
y-Acc. (m/s?)— (Al*j* )y 1 0.450 + 0.038 0.051 +0.001 0.968 + 0.002
2 0.437 +£0.012 0.094 + 0.002 0.829 + 0.007
3 0.366 + 0.042 0.365 +0.012 0.607 + 0.023
z-Acc. (m/s?)— (A;}* ) 1 —0.691 + 0.043 0.058 +0.001 0.968 + 0.002
2 —0.573 +0.014 0.111 £ 0.002 0.829 + 0.007
3 —0.303 + 0.041 0.354 +£0.012 0.607 + 0.023
Wiggliness—W;* 1 34.015 +£0.368 22.986 +0.378 —
2 490.068 + 5.584 502.558 + 6.776 —
3 9154.156 + 220.765  13,538.747 + 354.281 —

Note: Figures following =+ refer to standard errors estimated using the observed information
matrix.

(active swimming), as strong sinusoidal behaviour in acceleration is characteristic of fluking in
marine mammals (Simon, Johnson & Madsen, 2012). Finally, the mean of Wt*;* and variance of

A;“Z* in subdive state 3 are both much higher than in the other two states, and the autocorrelation

of A;‘i* is also much lower. This corresponds to vigorous swimming activity, especially as the
killer whale ends a dive (see Figure 5).
The estimated transition probability matrix and associated stationary distribution on the

coarse scale (i.e., between dives) are
P 0.847 0.153
~\0.914 0.086

and 6 = (0.857,0.143). The estimated transition probability matrices and stationary distributions
on the fine scale are

0.745 0.253 0.002
M =10.080 0.869 0.052],
0.000 0.229 0.771

0.886 0.114 0.000
@ =10.150 0.815 0.036],
0.000 0.225 0.775

5D = (0.202,0.649,0.149), and 5@ = (0.531, 0.405, 0.064) for dive types 1 and 2. In summary,
about 86% of dives are short dives of type 1. The whale performs an average of 6.54 short
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Ficure 4: Estimated gamma densities of killer whale dive duration (Y,) (top), estimated normal
conditional densities of killer whale acceleration (A:}* | A:‘J*_l = ;4:("[*)) (middle and bottom
left), and estimated gamma densities of “wiggliness” (W:;*) plotted on a log—log scale (bottom
right). The densities of Y, correspond to dive types 1 and 2, while the densities of A;kj* and

W*i* correspond to subdive states 1, 2, and 3. The densities are estimated by fitting the
| CarHHMM-DFT to the case study data (see Table 1).
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FIGURE 5: The x-component of acceleration, (y:i )y (top two panels), and dive depth (bottom

two panels) of a northern resident killer whale for a sequence of six selected dives. Each

panel is partitioned into dives by vertical black lines. Curve colour in the first and third

panels corresponds to estimated dive type, while curve colour in the second and fourth panels

corresponds to the estimated subdive state. Both dive type and subdive state are estimated

by fitting the CarHHMM-DFT to the data and applying the forward—backward algorithm to
determine the hidden state with the highest probability.

type 1 dives before switching to dive type 2 and an average of 1.09 longer type 2 dives before
switching back to dive type 1. This finding is consistent with those of Williams & Noren (2009)
and Tennessen et al. (2019a), both of which describe common bouts of short resting dives before
a longer, more energy-intensive deep dive. Furthermore, this killer whale is in the less active
subdive state 1 only 20% of the time during a dive of type 1, compared to 53% of the time
during a dive of type 2. Less active swimming behaviour is consistent with the need for marine
mammals to conserve energy when diving to greater depths and holding their breath for long
periods (Williams, Haun & Friedl, 1999; Hastie, Rosen & Trites, 2006). Figure 5 shows the
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FIGURE 6: Pseudoresiduals of “wiggliness” plotted over a standard normal density (left) and

weighted empirical distributions of dive duration Y, plotted over the corresponding fitted gamma

distributions (right). Both plots are generated by fitting the CarHHMM-DFT to the killer whale
case study data and applying the forward—backward algorithm.

decoded dive behaviour of six selected dives. Section 4 of Supplementary Material A also shows
the probability of each dive type and subdive state given the data and the fitted model.

3.4. Model Validation

We use two visual tools to evaluate the CarHHMM-DFT: pseudoresidual plots and empirical
histograms. The pseudoresidual of a coarse-scale observation y, is ®! (Pr(Y <y | {Y s Y,

vr,... ¥} \ (Y }) ), and the pseudoresidual of a fine-scale observation §y s @~ ! (Pr(Y;‘[* Ti

| {Y 1o Yo, YT Ll } \ {Y * }) ), where @ is the cumulative distribution function of the stan-

dard normal dlstrlbutlon. If the model is correct, then all pseudoresiduals are independent and
follow the standard normal distribution. Histograms of the pseudoresiduals mostly support that
the CarHHMM-DFT is well specified. One exception is W* ++» Wwhose pseudoresiduals are notice-

ably right-skewed (see Figure 6). This implies that the true distribution of W* may be heavier
tailed than the gamma distribution used in the case study. See Sections 57 of Supplementary
Material A for pseudoresidual plots corresponding to all observations and models.

We also plot histograms of dive duration corresponding to each dive type in Figure 6. Each
observation of dive duration is weighted by the estimated probability that it corresponds to a
particular dive type as decoded by the forward—backward algorithm. This procedure results in
two histograms—one corresponding to dive type 1, and the other corresponding to dive type
2. Each histogram is plotted together with the corresponding emission distribution estimated
by the CarHHMM-DFT. Analogous histograms corresponding to the fine-scale observations
are contained in Sections 6 and 7 of Supplementary Material A. Our results mostly show
that the CarHHMM-DFT explains the data well, but there are some exceptions. In particu-
lar, histograms corresponding to subdive state 3 show that AZ;* has heavier tails compared
to a normal distribution. This indicates the existence of rare events corresponding to excep-
tionally sudden changes in the acceleration of the killer whale. These outliers are potential
subjects for future study and may indicate biologically relevant phenomena such as prey capture
(Tennessen et al., 2019b).
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35. Comparison with Candidate Models

The HHMM-DFT, which ignores autocorrelation in acceleration, decodes dive types and subdive
states similarly to the CarHHMM-DFT, but is less likely to categorize any given behaviour as
subdive state 3 (see Figures S11 and S12 in the Supplementary Material A). In addition, for all
three components of 0':("1), 0':("2), and 0':("3), the HHMM-DFT produces estimates which are
significantly larger than those of the CarHHMM-DFT. The estimated uncertainties of the three
components of ﬁ:("l), ﬁ:("z), and ﬁz("3) are also less than half of those for the CarHHMM-DFT
(see Tables S1 and S2 in the Supplementary Material A). This suggests that the HHMM-DFT
overlooks some autocorrelation in the data, and that the HHMM-DFT may be overconfident in
its parameter estimates compared to the full CarHHMM-DFT.

The CarHHMM does not model the “wiggliness” of the acceleration data, so it regularly fails
to pick up obvious behavioural changes corresponding to the periodicity shown in Figure 5 (see
Figure S13 in the Supplementary Material A). These results essentially disqualify the CarHHMM
as a viable model for this data set. The acceleration pseudoresiduals are also light-tailed relative
to a normal distribution (see Figure S23 in the Supplementary Material A).

Finally, the CarHMM-DFT, which lacks a hierarchical structure, produces fine-scale param-
eter estimates and subdive state estimates similar to those of the CarHHMM-DFT. However,
the former’s lack of hierarchical structure means that it fails to differentiate between short and
long dives. This model therefore does not infer the dive-level Markov chain or the relationship
between the dive types and subdive states. For example, the CarHMM-DFT does not indicate
that the whale is more likely to be in subdive state 1 when engaged in longer dives compared to
shorter dives.

For a more complete set of results for each of the candidate models, see Supplementary
Material A.

4. SIMULATION STUDY

We perform a simulation study based on data generated from the full CarHHMM-DFT, as
defined in Section 3.2, to evaluate each candidate model when the ground truth is known. The
parameters used to generate the data are based on those estimated in the case study (see Table 1),
with slight modifications made for simplicity. In particular, we set Ajj* to a scalar instead of
a three-dimensional vector. We then fit all four models to the simulated data. Metrics used
to evaluate each model include hidden state decoding accuracy, bias in parameter estimates,
empirical standard errors of parameter estimates, and fitting times. To assess the accuracy
of uncertainty estimates, we also compare the empirical standard errors of a given model’s
parameter estimates with the standard errors estimated using the inverse of the observed Fisher
information.

4.1. Simulation Procedure

We generate 500 independent training data sets using the CarHHMM-DFT as a generative model.
Each training data set consists of a sequence of 100 curves, which we call a sequence of killer
whale dives. Each dive can be one of N = 2 dive types based on a Markov chain with transition
probability matrix

= 0.847 0.153
—\0914 0.086 )"

Dive duration is gamma-distributed, and the coarse-scale emission parameters are u!) = 27.34 s,
oM =10.96 s, u® =127.55 s, and c@ = 63.89 s. After generating the dive durations for all
100 dives in a data set, dive 7 is broken into a sequence of T[* = |Y,/2| 2-s windows, where
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the last ¥, — 2Tt* seconds of each simulated dive are ignored. Each 2-s segment is assigned one
of N* =3 behaviours according to a fine-scale Markov chain X* = {)N(t*l, ’XI*T*} with the
’ Tt

transition probability matrices

0.745 0.253 0.002 0.886 0.139 0.000
M =10.080 0.868 0.052| and T*® =]0.150 0.815 0.035
0.000 0.229 0.771 0.000 0.225 0.775

for dive types 1 and 2, respectively. Instead of generating the raw observations Yt, > we directly

simulate the fine-scale transformed observations ¥, = {Aﬁ*’ W*_}. Recall from Section 32

that we must specify the mean, standard deviation, and autocorrelation parameters corresponding

to {;\;‘ . ,;\;‘T*} as well as the mean and standard deviation parameters corresponding to
’ [

{VV;“I, ey W:‘- . } We select the following parameters in line with the results from the case study:
’ (e

Lo P =00s,06,"" =005, ;" =097, ;" = 34.01, and 5} " = 22.99.

A w
2. 1 =0.05,0,7 =015, ¢70? = 083, 4i"? = 490.06, and o = 502.56.

3. 1Y =025,6,Y =035,¢ =061, i =9154.16, and oY = 13,538.75.

It is not possible to uniquely reconstruct the raw accelerometer data Y* from ¥* alone, but we
describe one possible mapping from Y* to Y* in the Appendix. Figure S1 in the Supplementary
Material B shows one realization of ¥* for five dives of one simulated data set along with the
corresponding reconstructed realizations of Y*.

The two simulated dive types differ in that dives of type 1 are much shorter on average (27 s)
than dives of type 2 (128 s). The three simulated subdive states differ primarily because py, and
a’v"v are much higher for subdive state 3 than for subdive state 2, which in turn are much higher
than for subdive state 1. These larger parameter values correspond to much more vigorous and
variable periodic behaviour in the acceleration data.

We calculate the maximum likelihood estimates {9, f, é*, f*} for all four candidate models
for each of the 500 data sets using an optimization procedure similar to that in the case study.
For each of the 500 training data sets, we simulate a test data set to assess how well each
model predicts the hidden states as follows: Each test data set consists of a sequence of 100
dives and is created from the generative model with the true parameters {6,1", 6%, }. To assess
the coarse-scale hidden state prediction, we estimate p,(i | y,5*) =Pr(X, =i | Y =y, ¥* = %)
for i=1,2 and r=1,...,100 using the test set observations (y,y*) and the training set
maximum likelihood estimates. These estimates are found using the forward—backward algorithm
(Zucchini, Macdonald & Langrock, 2016). We compare these estimated conditional probabilities
to {xl, ,x]OO}, the true coarse-scale state realizations in the test data, by calculating the

average dive decoding accuracy for a single training/test data set pair, 2;12(1) D,(x, | y,5)/100.

We then report the average of this measure over the 500 training/test data set pairs. Analogously,
to assess fine-scale state prediction, we estimate p7_, (i* | y,§*) = Pr (X;}* =i|Y=y,Y"= 5)*)
for i*=1,2,3, 7 =1,..., T;‘, and r=1,...,100 using the test set observations, the training
set maximum likelihood estimates, and the forward—backward algorithm. Denoting the true

fine-scale state realizations from the test data set by {)?;“1, ,Sc;ki*}, we define the overall
’ T

’;

test data sets, dives, and windows. The conditional probabilities are estimated according to each
of the four models under study using the maximum likelihood estimates from the training data
set in conjunction with the forward—backward algorithm.

average subdive decoding accuracy as the average value of p7, (X:‘f* |y, 5)*) across all simulated
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TABLE 2: Average decoding accuracies and training times for all models in the simulation study.

Model Training time (min) Dive type Subdive type Dive accuracy Subdive accuracy
CarHHMM-DFT 156 + 67 All All 0.956 + 0.028 0.911 + 0.006
1 1 0.846 + 0.027
] 2 0.973 +£0.032 0.918 +0.011
1 3 0.860 + 0.030
2 1 0.949 +0.010
2 2 0.856 + 0.097 0.915+0.015
2 3 0.871 +0.057
HHMM-DFT 162 + 64 All All 0.959 + 0.025 0.844 +0.024
1 1 0.761 + 0.063
1 2 0.977 £ 0.028 0.845 +0.029
1 3 0.858 +0.034
2 1 0.883 + 0.066
2 2 0.851 + 0.097 0.829 + 0.041
2 3 0.876 + 0.061
CarHHMM 258 + 106 All All 0.924 +0.127 0.845 +0.018
1 1 0.689 + 0.050
1 2 0.933 +£0.153 0.900 + 0.031
1 3 0.673 +0.059
2 1 0.906 + 0.022
2 2 0.864 +0.134 0.848 +0.033
2 3 0.687 +0.105
CarHMM-DFT 45+22 All All — 0.912 + 0.006
1 1 0.854 +0.026
1 2 — 0.921 +£0.011
1 3 0.860 + 0.032
2 1 0.943 +0.011
2 2 — 0.919 +0.014
2 3 0.878 + 0.053

Note: Each of the four models was fit to 500 training data sets composed of 100 simulated dives
and tested on test data sets also composed of 100 simulated dives. Reported values are averages,
and figures following =+ refer to sample standard deviation across the 500 data sets. “All” denotes
overall average decoding accuracy.

42. Simulation Results

The full CarHHMM-DFT is the best performing model of the four candidates since it is
the generating model. Its average dive decoding accuracy is approximately 0.96 and its
average subdive decoding accuracy is approximately 0.91. All parameter estimates of emission

The Canadian Journal of Statistics / La revue canadienne de statistique

DOI: 10.1002/cjs. 11673



2022 MULTI-SCALE, STATE-SWITCHING FUNCTIONAL DATA WITH HMMS 347

B Subdive state 1 ® Divetypel
Subdive state 2 ® Dive type 2
Subdive state 3

-5

&

L)
E o

*>:;

=5

1.0 A 0
Q
T
T
O 5 e OO . o/ s e o e TSI R RN REMIORY o 't s ol ymimnte w s [ = s nieta s /e s ] = s [ mreime nre ot wt [l n el e = v m b diernin s -~ Z
ol
o
M
00 - I T T I T B

1.0 |
— T
X =
1l 0.5 g L L e o .Z
3 =
a —

0.0 -

1.0 A
0
o
0.5 - Joumen L ... CECESE L od oo WL B | S— %
=
=<

0.0 -

Time (s)

Ficure 7: Estimated probabilities that each dive ¢ is of type x, for six selected dives of a

simulated data set of killer whale dive behaviour. Each panel is partitioned into dives by vertical

black lines. Curve colour corresponds to true dive type, while background colour corresponds

to true subdive state. The CarHMM-DFT is omitted because it assumes that there is only
one dive type.

distributions (# and 6*) and transition probability matrices (I and I'*) on both the coarse scale
and fine scale are either comparable or favourable relative to all other models. The empirical
standard errors of all parameter estimates (9, I', §*, and [™*) are well approximated by the inverse
of the observed Fisher information matrix, although the estimated standard errors tend to be
slightly smaller than the empirical standard errors. This underestimation is especially noticeable
for parameters associated with the “wiggliness” W;}*, where the empirical standard error can be
up to 5 times as large as the estimated standard error. See Tables S2—S6 in the Supplementary
Material B for detailed results.

The HHMM-DFT has an average dive decoding accuracy comparable to that of the
CarHHMM-DFT (0.96), but its average subdive decoding accuracy is worse by approximately
seven percentage points (0.84). The HHMM-DFT’s parameter estimates are comparable to
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Ficure 8: Estimated probabilities that each window (z,7*) corresponds to subdive state )chi*

for six selected dives of a simulated data set of killer whale dive behaviour. Each panel is

partitioned into dives by vertical black lines. Curve colour corresponds to true subdive state,
while background colour corresponds to true dive type.

those of the CarHHMM-DFT with the notable exception that the former greatly overestimates

oD and cr:("z) and slightly overestimates 0':("3). In addition, the estimated standard errors of
ﬁ:;("]), ;2:("2), ﬁ:("3), &0 650D and &Z("3) are much smaller than the associated empirical

standard errors (see Table S3 in the Supplementary Material B). These results suggest that
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estimates of standard deviation can be too large and estimates of standard errors can be too
small when autocorrelation is ignored. This finding is consistent with the results of the case
study, where the HHMM-DFT produced larger estimates of ¢ and smaller estimates of standard
error compared to the CarHHMM-DFT. When standard errors are underestimated, the associated
confidence intervals are too narrow, and so researchers may be overconfident in their parameter
estimates.

The CarHHMM is the worst performing model in terms of its dive decoding accuracy,
which is approximately four percentage points worse than that of the CarHHMM-DFT (0.92).
The former’s average subdive decoding accuracy is approximately six percentage points worse
than that of the CarHHMM-DFT (0.85). This result is consistent with our expectations because
the CarHHMM does not model the “wiggliness” of the fine-scale process, which is the most
distinct difference between the subdive states. In addition to its relatively poor average decoding
accuracy, the CarHHMM is also the worst of the four candidate models at estimating emission
parameters and transition probability matrices. Estimates associated with subdive states 2 and
3 (6*? and 6*Y) are especially poor. See Supplementary Material B for more-detailed
results.

Finally, the CarHMM-DFT is nearly identical to the CarHHMM-DFT in terms of average
subdive decoding accuracy, fine-scale parameter biases, and both estimated and empirical
standard error for the fine-scale parameter estimates. In addition, the time required to fit the
CarHMM-DFT is less than one-third that of the other models (see Table 2). However, this model
cannot differentiate between dive types, as it assumes that there is only one. The CarHMM-DFT
nonetheless fits a (misspecified) single gamma distribution over the dive duration of all dives.
The resulting parameter estimates (fIy and 6y) are highly correlated (see Figure S5 in the
Supplementary Material B).

Figures 7 and 8 display five dives of one simulated data set as well as the decoded dive
types and subdive states associated with each model. The CarHHMM-DFT and CarHMM-DFT
produce similar estimates of subdive state, the HHMM-DFT is slightly more likely to misclassify
subdive state 1, and the CarHHMM is more likely to misclassify subdive state 3. All models
classify dive type with high accuracy, with the exception of the CarHMM-DFT, which does not
estimate dive type.

5. DISCUSSION

Current functional data analysis literature addresses dependence between curves either with
multi-level models (Di et al., 2009; Chen & Miiller, 2012), which lack a time component, or
with functional time series, which overlook the possibility that curves have several distinct
“types” (Kokoszka & Reimherr, 2018). Our work addressed these issues and introduced a
flexible framework to model functional time-series data using HMMs. We suggested handling
temporal dependence between curves by using either an HMM or a CarHMM to model the
curve sequence. We then suggested viewing each individual curve as an HMM emission whose
distribution is described by a fine-scale model. Here we used a CarHMM as the fine-scale
model, but there are a wide range of possible fine-scale models, including a Poisson process or a
continuous-time approach similar to that of Michelot & Blackwell (2019). We also incorporated
a moving-window transformation at the fine scale to capture intricate dependence structures.
Together, the coarse- and fine-scale models make up a hierarchical structure that can account
for simultaneous processes taking place at different time scales. Provided that the construction is
not overly complex, a hierarchical model created using our method can be both flexible and easy
to fit using maximum likelihood estimation. Our method is not intended to minimize prediction
error for functional data, but incorporating HMMs into autoregressive predictive models such
as those described in Aue, Norinho & Hormann (2015) and Gao, Shang & Yang (2019) is a
promising and natural direction for future study.
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We demonstrated the usefulness of this framework using a biomechanical/ecological example,
where we used HMMs to classify the coarse- and fine-scale diving behaviour of a northern
resident killer whale in Queen Charlotte Sound, off the coast of British Columbia. Our analysis
gave a deeper understanding of the killer whale’s tri-axial movement and thus its behaviour
and energy expenditure (Gleiss, Wilson & Shepard, 2011; Qasem et al., 2012), both of which
are important for understanding the foraging ecology and nutritional status of northern resident
killer whales (Noren, 2011). Our model is also applicable to many diving animals such as sharks
(Adam et al., 2019), seals (Jeanniard du Dot et al., 2016), and porpoises (Leos-Barajas et al.,
2017). In addition, since complicated state-switching processes with temporal dependence are
common in settings ranging from speech recognition (Juang & Rabiner, 1991) and neuroscience
(Langrock et al., 2013) to oceanography (Bulla et al., 2012) and ecology (Adam et al., 2019), we
believe that researchers can adapt our methodology for the analysis of a wide range of time-series
data in a variety of fields.
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APPENDIX
Detailed Description of the Data Simulation in Section 4.1

We can easily simulate realizations of the coarse-scale HMM (X and Y) given the parameters

I and 6. For each dive 7, we can also easily generate the fine-scale hidden Markov chain

X ={Xxr e ’Xt*T*} according to one of the transition probability matrices I*() or T™*®
>t

depending upon the value of X,. This determines the sequence of fine-scale hidden states
corresponding to each window. Recall that the fine-scale model is based on a sequence of Tt*
2-s windows, each containing 100 observations, and that our model is formulated in terms of
quantities derived from the raw data within each window (namely the average acceleration,
A* e and wiggliness, W* .). Generating the raw acceleration data from A:‘ 5 and W* is not
straightforward. In our snnulatlon study, we generate raw acceleration data so that we can

visualize our results in terms of the underlying data curves for each dive. Here, we explain how
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we generate the acceleration curves so that A* . and W* both follow the specified model. A key
component is the DFT of the 100 raw acceleratlon values in window 7* of dive 7,

*(k)
= DFT { L1000 —=1)+1° "> thOt* } (k)

for k > 0, as defined in Equation (6).
We simulate the raw acceleration data for dive ¢ in three steps: (1) simulate the average

acceleration within each window (Y*(O))

window ( 70 k= 1,. 99) and (3) take the inverse DFT of ¥* e

Z‘*’

(2) simulate all other Fourier coefficients within each

* * x(0) £+(99)
{leoo(z* D1 YthOt*} - IDFT{Y oo Vi }
for 7 = T* The details of steps (1) and (2) are given below.
For step (1) we generate Y *(0) ey )A/:‘(T(? as a CarHMM with the underlying Markov state
sequence Xt*] s e ,X[ . and a random first emission. Specifically, we let
o
o\ 2
PO X =i~ W (100,4*( i (1000—/’;(*‘ >) )

and

1,7 —1

§ 2
>F(O) o #(0) #(-,1%) $#(0) #(e,0%) #(-,0%) #(-,0%)
POk = 00~ N<¢ i +100< — ¢ )#A ,(1ooaA ) )

(A1)
for #* =2,...,T", where ,u*( e Z("i*), and d):("i*) are as defined in the simulation study in
Section 4.

For step (2), we first construct f/t*l(f) fork=1,...,49, as
7O = q® iy /pP (A2)

11" t t* [Nl

where the a( )s are independent and equal to either 1 or —1 each with probability 1/2 and i
is the i 1mag1nary unit. We include i in Equation (A2) to force all variation within a window to
take the form of a sine wave, which reduces the variation between the end points of windows

relative to a cosine wave. Given the fine scale states, the b??*s are independent of one another

and independent of a(k) s. The distribution of b(k) is

f’?* | X =1 ~ Gamma(11.03/(k +1)*,15.54)
bikz)* | X =2 ~ Gamma(4.80/(k + 1)°,515.38)
PO X =3 ~ Gamma(231/(k + 1),20,023.44). (A3)

The first argument of Gammag-,-) is the shape parameter and the second is the scale

parameter. The squared magnitude of the kth Fourier coefficient is equal to b®

e which decays

on the order of 1/k> to “smooth out” the raw acceleration data.
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We then define the remaining 50 Fourier coefficients as ¥ ; *(50) =0and Y*(k) f/:[(*l 970 for
k =51,...,99. This guarantees that the inverse DFT is real- valued ’

We now show that this construction of the raw acceleration data results in the d1stributions
listed in Section 4.1. It suffices to show that the construction of the DFTs, the Y s yields the
desired dlstrlbutlons

First, since 7O = 2100 Y* = 100A*. Equation (A1) implies that Afl, . AF

1" n=1 " £,100(7*— l)+n 1,1 1,T%
follows a CarHMM with normal emission distributions and parameters as defined in the
simulation study in Section 4.

From Equations (7) and (A2), the “wiggliness” within window 7* of dive 7 is

w

Z 1F17 = 2 b1

k=1

If @ < 50, then Wt*;* is the sum of independent, gamma-distributed random variables with

identical scale parameters, so the distribution of Wt*;* is also gamma-distributed. Thus, by
Equation (A3) '

We | X=1 ~ Gamma<211.03/(k+1)3,15.54),

k=1

@
WX =2 ~ Gamma<z4.80/(k+1)3,515.38>,

k=1
and N
@
W | X5 =3 ~ Gamma(Z 231/(k + 1)3,20,023.44>.
k=1

Setting @ to 10 and carrying out simple calculation of the mean and variance of a gamma

(i) (%)

distribution gives the desired values for ;" * and o,

Likelihood of the CarHHMM-DFT
The overall likelihood of the CarHHMM-DFT is

T

Lcammm-prr (8, 07, T, 175, 5%) = 5P<)’1»Y1’9 6", F*) HFP(%’?:K;H’H*’F*)IM
=2

where
P(y,57:0.0°T" ) = diag| 1 (300 ) L5 (07,7357 .
f(N) (yt; G(N))[’ﬁne (9*7F*(N);}~]:<) ]
and f@(y,;;6) is the emission distribution of dive duration given that X, = i. The likelihood
corresponding to the fine-scale model is
Ty
Line (0*’ F*(i);j’j) = &0 H r*(i)P<)~7;k7* | jz;k?*_] : 9*)11\,*’
=2
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where P(j);‘j* | yii*_l;a*) is an N* x N* diagonal matrix with the (i*,7*)th entry f*("i*)(yii* |

yii*_l;e*ﬁf‘)). Recall that f*(""*)(- | )7:[*_1;0*(""*)) is the probability density function of f’;}*
Vv o ok V3 o~
when th* =" and Yz,?*— V=V
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