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Abstract

The move to ecosystem-based management of marine fisheries and endangered species would be greatly facilitated by a

quantitative method for identifying marine ecosystems that captures temporal dynamics at meso-scale (10s or 100s of

kilometers) resolutions. Understanding the dynamics of ecosystem boundaries, which may differ according to the species of

interest or the management objectives, is a fundamental challenge of ecosystem-based management. We present an adaptive

ecosystem classification that begins to address these challenges. To demonstrate the approach, we quantitatively bounded

distinct, biologically meaningful marine regions in the North Pacific Ocean based on physical oceanography. We identified

the regions by applying image classification algorithms to a comprehensive description of the ocean’s surface, derived from an

oceanographic circulation model. Our resulting maps illustrate 15 distinct marine regions. The size and location of these

regions related well to previously described water masses in the North Pacific. We investigated seasonal and long-term

changes in the pattern of regions and their boundaries by dividing the oceanographic data into four seasons and two 10-year

time periods, one on either side of the 1976–1977 North Pacific Ocean climate regime shift. We compared our results for each

season across the regime shift and for sequential seasons within regimes using the Kappa Index of Agreement and the index

of Average Mutual Information. Seasonal patterns were more similar between regimes than from one season to the next

within a regime, while the magnitude of seasonal transitions appeared to differ before and after the regime shift. We assessed

the biological relevance of the identified regions using seasonal maps derived from remotely sensed chlorophyll-a

concentrations ([chl-a]). We used Kruskal–Wallis and Wilcoxon rank sum tests to evaluate the correspondence between the

[chl-a] maps and our post-regime shift regions. There was a significant difference in [chl-a] among the regions in all seasons.

We found that the number of regions with distinct chlorophyll signatures, and the associations between different regions,

varied by season. The overall pattern of association between the regions was suggestive of observed, broad-scale patterns in

the seasonal development and distribution of primary production in the North Pacific. This demonstrated that regions with

different biological properties can be delineated using only physical variables. The flexibility of our approach will enable

researchers to visualize the geographic extents of regions with similar physical conditions, providing insight into ocean

dynamics and changes in marine ecosystems. It will also provide resource managers with a powerful tool for broad

application in ecosystem-based management and conservation of marine resources.
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1. Introduction

Studies at the ecosystem level are relevant to both
fisheries management and protected areas defini-
tion. Fisheries managers are increasingly required to
take ecosystem considerations into account when
assessing commercially exploited stocks, while con-
servation efforts are increasingly focused on deli-
neating areas that will protect habitats of species at
risk at all life stages. The determination of habitat
boundaries (e.g., essential or critical habitat) for
both endangered and commercial marine species has
been a legal requirement in the United States for
decades under both the Endangered Species Act
(1973) and the Magnuson-Stevenson Fisheries
Conservation and Management Act (1996). In
Canada, similar legislation is now in place in the
form of the Species at Risk Act (2002). This
increasing focus on ecosystem-based management,
first advocated at least 70 years ago (Allee, 1934),
presents significant challenges, including the map-
ping of marine ecosystems in space and time.

Ecosystem mapping—the characterization of a
physical environment and its associated biota—is
complex. Even in terrestrial ecology, commonly
described as being decades ahead of marine ecology
in terms of ecosystem classification, there is no
single, general non-taxonomic classification system
for ecological units beyond the species level
(Morrison et al., 1998). Instead, terrestrial regions
are often delineated based on biological, geo-
graphic, and climatic characteristics (e.g., biogeocli-
matic zones). This works well as an operational
definition of terrestrial ecosystems because the
biological component (i.e., flora) is relatively
immobile. It is only an operational definition
because it does not include the more mobile
components of the terrestrial ecosystem (e.g.,
insects, birds, ungulates). Biogeoclimatic zones thus
provide landscape ecologists a bio-physical pattern,
a spatial context, in which the more mobile
components of the terrestrial ecosystem exist.

There has been limited success in applying the
methods of landscape ecology to the oceans. While
even a cursory examination reveals physical and
biological patterns in the oceans at a range of spatial
and temporal scales (e.g., Bakun, 1996; Mann and
Lazier, 1996), the patterns are ephemeral and
manifest themselves differently across spatial scales.
In contrast to the landscape, marine primary
production (phytoplankton) is patchy, ephemeral,
and quickly consumed by higher trophic levels. The
processes responsible for creating the patterns in
phytoplankton distribution are largely a function of
physical forcing and the associated biological re-
sponse (Platt and Sathyendranath, 1999). The overall
biogeographic patterns (ecosystems) thus represent a
combination of environmental structure, species
behavior, and population dynamics (MacArthur,
1972).

Variability in physical forcing results in physical
patterns with different spatial and temporal scales
that provide the environmental structure for the
overlying biology. However observations of these
biological patterns and their integration into the
classification can be complicated by species at
various trophic levels, operating at different spa-
tio-temporal scales (Steele, 1989). Given the dy-
namic nature of the marine environment and the
mobility of the species of interest (marine mammals
and commercial fishes), methods for delineating
ecological marine boundaries must be adaptable to
a range of spatial and temporal scales. The
delineation and mapping of a dynamic geo-physical
context has the potential to be as useful to marine
ecology as biogeoclimatic zones are to terrestrial
ecology.

In this study, our objective was to apply image
classification techniques to the marine environment
as a method for classifying this environmental
structure. We hypothesized that regions of similar-
ity identified by a classification based solely on
physical parameters would have both physical and
biological significance, and consequently assessed
the resulting maps in terms of both physical and
biological relevance. Since we are undertaking the
task of mapping ocean regions that are both
physically and biologically meaningful, a brief look
at previous efforts to classify the marine environ-
ment into meaningful regions is warranted.

1.1. Existing classification systems

Marine ecosystems have commonly been defined in
one of four ways (Laevastu et al., 1996): the nature of
the dominant organisms (e.g., planktonic ecosys-
tems); specific physical features (e.g., reef and benthic
ecosystems); geographic locations (e.g., Bering Sea
ecosystem); or some combination of these. Classifica-
tion systems have been developed to describe such
boundaries. A shared characteristic of most classifica-
tion schemes is that they operate on a single spatial
and temporal scale. Generally, these scales tend to be
large (coarse resolution) and have no temporal
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variability. Higher resolution (i.e., meso-scale) classi-
fications have been limited to nearshore areas
(particularly reefs, coastlines, and estuaries) because
of the tendency to associate ecological boundaries
with tangible features (e.g., bathymetry) or with
political boundaries. Explicitly temporal (i.e., seaso-
nal) classifications are extremely rare.

Marine classifications using some combination of
biological and physical features, and geographic
location, are by far the most common. The three
most frequently cited systems are: Cowardin’s
(1979) classification of wetlands and deepwater
habitats; Sherman’s (1986) Large Marine Ecosys-
tems (LMEs); and Longhurst’s (1998) biomes and
provinces. These can be characterized as bottom-up
classifications, where lower trophic biology, physics,
and/or chemistry are used to define marine bound-
aries assumed to be meaningful for an entire multi-
trophic ecosystem.

Cowardin’s (1979) system is primarily designed
for wetlands, with the marine portion limited to
substrate characterization. LMEs (Fig. 1a), de-
scribed as being characterized by unique hydro-
graphic regimes, submarine topography, and
trophically-linked populations, have been exten-
sively applied to ecosystem studies and management
(Sherman, 1986). While the LME approach has
been useful, we could find no quantitative descrip-
tion of how LME boundaries were identified, or
how the distinctiveness of each LME might be
quantified. Longhurst’s (1998) classification of the
world’s oceans into biomes and provinces (Fig. 1b)
does integrate physical oceanography with biogeo-
graphy. However, Longhurst (1998) cautions that
the boundaries illustrated are somewhat arbitrary,
intended to represent approximate spatial relation-
ships between the provinces.
Fig. 1. Ecosystem boundaries according to two well-known marine cl

(1986) and (b) Longhurst (1998).
Classifications have also been undertaken at local
scales, typically applied to shelf waters (e.g.,
Zacharias et al., 1998, in British Columbia; Bredin
et al., 2001, in the Bay of Fundy). These can be
termed ‘cookie cutter’ approaches, because data
layers are overlaid, and regions are defined as the
intersection of the categories contained in each
layer. Boundaries are thus a function of the spatial
intersection of the source data and are often driven
by spatially invariant bathymetry or benthic cate-
gories. When dynamic variables such as tempera-
ture or salinity are included, seasonality is typically
ignored.

We found a single ‘‘top–down’’ approach that
attempted to identify regions based on biologically
dominant species and communities occurring there.
Ray and Hayden (1993) applied Principal Compo-
nent Analysis to the habitat ranges of 86 species in
the Bering, Chukchi, and Beaufort Seas and
mapped six ‘provinces’ based on the highest loading
principal components. They noted that these
provinces did not correspond well to the outer,
middle, and inner shelf domains that are typically
used to characterize the Bering Sea, suggesting that
a single ecosystem classification does not suit all
applications.

Roff and Taylor (2000) proposed a hierarchical
scheme for classifying representative or distinctive
marine habitats for marine conservation. Their
proposed approach for linking biological and
physical attributes, while similar to ours, does not
address the dynamic nature of boundaries. From a
conservation perspective, the consequences of dy-
namic ecosystem boundaries are significant (Wilson
et al., 2004).

Finally, Platt and Sathyendranath (1999) pro-
posed an operational definition of ocean structure
assification systems applied to the North Pacific by (a) Sherman
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for identifying production domains using biological
rate parameters derived from remotely sensed
chlorophyll. Their approach maps dynamic, bio-
geochemical provinces, lends itself to seasonal
analyses, and provides a framework for investigat-
ing the underlying physical processes. However,
extending this approach to higher trophic levels
would require identification of the appropriate rate
parameters, and their integration over the appro-
priate spatial and temporal scales.

While these approaches to classification have
helped us understand some aspects of oceanic
structure, they do not provide a means of quantify-
ing and mapping the dynamics of ecosystem
boundaries. For example, if understanding that a
California Current ecosystem exists is important,
delineating its seasonal and spatial extents in any
given season or year must be equally important.

1.2. Adaptable marine classification

Certainly, there is not one correct way to classify
marine ecosystems (Grossman et al., 1999; Steele,
1989). Rather, management objectives (Grossman
et al., 1999; Perry and Ommer, 2003), processes
(Morrison et al., 1998), or species (deYoung et al.,
2004) determine the appropriate methods and scales
(in terms of extent and resolution). By definition,
the multi-species objectives of ecosystem manage-
ment require a classification approach that can
adapt to multiple temporal and spatial scales. There
is some evidence that species distributions at higher
trophic levels (e.g., pelagic fish and squid) are
spatially linked to specific water masses and that
these links persist across time and across contrasting
physical conditions (e.g., Garrison et al., 2002;
Polovina et al., 2001). This suggests that identifying
regions of similar hydrographic properties over
appropriate temporal scales may provide useful
descriptions of species’ habitats.

In this study, we address this issue by illustrating
a classification approach that is adaptable in terms
of scale and input data sets, and bounds hydro-
graphic structures in the oceanic marine environ-
ment. Our approach differs from other marine
classification efforts because it allows available
physical and biological data to be integrated across
any specified spatial or temporal scale supported by
the data. While the relevant scales will be somewhat
species-specific, resource managers must deal with
seasonal and inter-annual temporal dynamics and
spatial scales on the order of 10s or 100s of
kilometers. Thus, any relevant definition of a
marine ecosystem must provide information at
these scales.

2. Methods

We applied image classification (a method for
identifying classes in remotely sensed images) to a
comprehensive physical oceanographic data set
describing the surface of the North Pacific to find
regions of similarity within the seascape (Fig. 2). We
examined the oceanographic and ecological rele-
vance of the identified regions in three ways. First,
we qualitatively compared them to documented
upper zone, hydrographic features, such as major
water masses and surface currents. Second, we
compared changes in the patterns of regions to
documented changes resulting from the 1976–1977
regime shift (e.g., Anderson and Piatt, 1999; Benson
and Trites, 2002). We also calculated the relative
similarity of the patterns of regions among and
between seasons for two 10-year time periods before
and after this regime shift. Finally, we assessed the
biological significance of the regions identified in the
post-regime shift period by testing for differences in
seasonal chlorophyll-a concentrations ([chl-a]), de-
rived by remote sensing, among the regions.

2.1. Study area and resolution

We conducted our basin-wide classifications of
the temperate North Pacific on a 100 by 100 km grid
for all oceanic waters between 301N and 651N. We
selected this grid size partly because of the resolu-
tion of the source data (11 longitude–latitude grid),
but also because the coupling of space and time
scales suggests that this may be an appropriate
resolution for examining meso-scale patterns typi-
cally observed in open ocean ecosystems (Mann and
Lazier, 1996, p. 258). Since seasonal changes can be
relatively pronounced at these latitudes, we chose a
temporal resolution of four seasons. To visualize
and evaluate changes in the oceanic regions due to
decadal scale changes in ocean climate, we produced
seasonal results for two 10-year periods (1966–1975
and 1980–1989). We did not evaluate inter-annual
changes.

2.2. Data

The nature of our analysis placed several con-
straints on the suitability of data sets. We required



ARTICLE IN PRESS

Fig. 2. Results of the image classification applied to five input variables to generate 15 regions per seasonal partition.
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spatially comprehensive data and long-term seaso-
nal averages pre-dating contemporary satellite-
based sensors. Thus, we relied on the output from
a basin-scale General Circulation Model (GCM)
from which we derived seasonal averages for a suite
of physical oceanographic variables. GCMs are
predictive models of the marine environment
typically used by oceanographers to characterize
oceanic currents and conditions for a range of
applications including studies of climate change,
oceanographic processes, and primary production.
These models are the only source of a comprehen-
sive, four-dimensional (latitude, longitude, depth,
time) description of the marine environment, and as
such were amenable for our study.

We used five different physical variables output
from a ROMS (Regional Ocean Modeling System—
see http://marine.rutgers.edu/po/index.php?model=
roms) GCM of the North Pacific (Yi Chao,
unpublished data, Jet Propulsion Laboratory, Cali-
fornia Institute of Technology). We obtained
monthly averages for wind stress (dyn cm�2), surface
current velocity (m s�1), sea surface height (SSH,
cm), sea surface salinity (SSS, psu), and sea surface
temperature (SST, 1C) for two ten-year periods
(1966–1975 and 1980–1989) spanning the 1976–1977
regime shift.

We used surface variables for two reasons: First,
because surface features (fronts, upwellings, etc.)
are the manifestation of larger physical proce-
sses, they adequately describe observed oceanic
patterns. Second, because [chl-a] is closely asso-
ciated with the surface layer, surface variables were
appropriate to test our hypothesis that such a
classification would result in biologically mean-
ingful regions.

http://marine.rutgers.edu/po/index.php?model=roms
http://marine.rutgers.edu/po/index.php?model=roms
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We divided the year into four equal three-month
seasons starting with January–March. This resulted
in a total of 40 coverages (i.e., digital maps), each
representing one of five input variables for eight
temporal snapshots (four seasons in each of two
time periods).

2.3. Image classification

We used an unsupervised cluster analysis algo-
rithm provided by the IDRISI software system
(Clark Labs, 2003) to statistically organize the
oceanographic input variables into distinct marine
regions. The approach is analogous to terrestrial
classifications of multi-spectral satellite imagery into
landscape classes (e.g., agricultural, urban, forest,
etc.). The algorithm partitions the study area into a
specified number of regions according to the
variance structure of the data.

Clustering results are most robust if the input
variables are standardized and transformed to a
multivariate-normal parameter space. We therefore
examined the histograms for each variable and
applied a transformation to improve normality
when necessary. The values were then standardized
by converting each file to byte format (256 classes).

We applied IDRISI’s ISOCLUST routine (based
on H-means and K-means clustering procedures—
Hartigan, 1975) to create clusters representing
regions of similarity. We chose the number of
clusters to keep by examining histograms of pixels
per cluster for significant breaks in the slope. The
breaks in slope represent different levels of general-
ization of the data. Clusters with small numbers of
pixels (i.e., where the slope of the histogram flattens)
are relatively insignificant. To allow comparisons
among seasons and regimes, the resulting partitions
(mapped results) required the same number of
clusters. We chose to keep 15 clusters based on a
visual examination of the eight histograms.

2.4. Evaluating classification results

To evaluate the oceanographic relevance of our
regions, we compared our results with the upper
zone domains identified by Dodimead et al. (1963).
Specifically, we projected the results from our
summer pre-1976 analysis into geographic (lat–lon)
coordinates and overlaid the schematic drawn by
Dodimead et al. (1963), which was based on an
analysis of summer SST, SSS, and surface current
data from 1955–1959. These domains have proven
to be robust over time in the sense that they are still
referred to by name in oceanographic literature.
We also qualitatively compared our results to
features commonly mentioned in the oceanographic
literature.

We compared seasonal partitions within and
between time periods using both the Kappa Index
of Agreement (KIA) (Pontius Jr., 2000) and the
Average of Mutual Information (AMI) (Finn,
1993). KIA is a measure of the similarity of two
images and takes into account the location and
quantity of pixels in matching regions. KIA, when
used as a measure of model accuracy to compare
modeled output to reference data, assumes that the
regions compared between images match or repre-
sent the same class. In our case, because each
partition was the output from an independent
classification analysis, there was no inherent rela-
tionship between the regions in one partition and
the regions in another. We therefore matched
regions between images using a cluster separation
measure and consistency of location as our guides,
and used KIA scores to provide a relative measure
of similarity between partitions.

On the other hand, AMI quantifies the amount of
information shared between two images. AMI is
described as a measure of consistency rather than
correctness (Finn, 1993). To quantify shared in-
formation, AMI calculates the conditional prob-
abilities that an area in one map is a member of a
particular class given the class of that area in the
second map (Finn, 1993). Thus, AMI provides a
means of quantifying similarity between maps with
different themes (Couto, 2003).

We calculated KIA scores, using IDRISI’s
VALIDATE module (Clark Labs, 2003), for se-
quential seasonal partitions within time periods and
paired seasonal partitions before and after the
1976–1977 regime shift. KIA values range from
�1, indicating complete disagreement, to +1,
meaning perfect agreement. Positive KIA values
indicate that two partitions are more similar than
chance alone would dictate, and greater similarity
scores higher. Negative KIA values indicate that
two images are more different than one would
expect due to chance. We calculated AMI scores for
the same image pairs for which we calculated the
KIA. Since AMI scores depend on the application,
we calculated the maximum theoretical value for
two identical maps of 15 regions and reported both
absolute scores and scores as a proportion of the
maximum.
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To assess the potential biological relevance of the
regions identified in our classification analyses, we
compared seasonal [chl-a] among our post-1976
regions in the North Pacific. We obtained monthly,
remotely sensed [chl-a] climatologies (long-term
averages) from September 1997 to March 2006
(SeaWiFS Project, 2006), projected these climatol-
ogies onto our study grid, and calculated seasonal
averages. While there is evidence for additional
regime shifts in 1989 and 1998, these are not
thought to have reversed the 1976–1977 shift (Bond
et al., 2003). Therefore, the [chl-a] climatologies
represent the best available biological data with
which to evaluate the relevance of our regions.

We tested the null hypothesis that there were no
significant differences in distributions of [chl-a]
among the regions within each season using the
Kruskal–Wallis H-test. We then examined the
significant results for each season by testing all
pair-wise comparisons for a significant difference
using the Wilcoxon rank sum test (also known as
the Mann–Whitney test) with a Bonferroni cor-
rected alpha level (Sokal and Rohlf, 1995). Both of
these tests are non-parametric, rank-based tests and
are consequently robust to non-normality in the
distributions. In cases where parametric methods
would also be applicable, these non-parametric tests
are considered to be 95% as powerful (Zar, 1996).
The normal approximation of the Wilcoxon test
statistic was used because of the large sample sizes
in our study.

3. Results

3.1. Oceanic regions

Overall, the individual oceanic regions (Fig. 2)
were reasonably spatially coherent despite the non-
spatial nature of the image classification (i.e., the
locations of pixels were not considered during the
clustering). Visual inspection of the results sug-
gested that some geographic areas of the North
Pacific exhibit greater relative variability than
others within the time period captured. This was
demonstrated by a higher number of smaller, less
contiguous clusters. For example, the Sea of Japan
appeared quite variable especially in summer and
fall when it was divided among three or four
different clusters. In contrast, the large coastal shelf
in the eastern Bering Sea was always represented by
one or two clusters, suggesting greater homogeneity.
The Sea of Okhotsk also appeared to be a fairly
homogenous region (except in fall pre-1976), while
the area east of Japan (the location of the dynamic
Kuroshio Current) was dominated by high varia-
bility across most seasons in both regimes.

3.2. Correspondence with known features

The patterns of oceanic regions for summer pre-
1976 were very similar to the upper zone domains
described by Dodimead et al. (1963) (Fig. 3). In fact,
several features in the schematic were associated quite
clearly with colored regions and their boundaries. The
Alaska Gyre corresponded well to the pale blue
region (#9), although this region extended further
west and also encompassed most of the western
subarctic gyre. The subarctic boundary and the
northern boundary of the transitional domain both
corresponded roughly to boundaries between colored
regions and this correspondence persisted across
seasons and regimes. However, some of the features
in the schematic were not well represented in our map
of regions including the Okhotsk Sea gyre and the
Bering Sea gyre. Furthermore, while the partition
contained several divisions from east to west, the
boundary between western and central subarctic
domains depicted by Dodimead et al. (1963) inter-
sected the middle of two colored regions. Similarly,
the Bering Sea was split into two regions in our
analysis, but the boundary between them was offset
from the boundary of the Bering Sea coastal domain
shown on the schematic. The locations of these
boundaries between regions shifted considerably in
both latitude and longitude among the seasons and
between climate regimes in our results (Fig. 2).

Dodimead et al. (1963) recognized five major
domains, based on an analysis of sparse shipboard
sampling. The results of our classification were best
represented by 15 unique, relatively homogenous
regions. It was therefore not surprising that some of
the domains identified by Dodimead et al. (1963)
were best represented by a combination of regions.
For example, the central subarctic domain con-
tained the bright yellow region (#15), part of the
Alaska Gyre pale blue region (#9), and part of the
burgundy region (#7) (Fig. 3). Similarly, the
transitional domain contained portions of several
regions, most notably deep blue (#2), green (#8),
and peach (#11) (Fig. 3). In contrast, the Alaskan
stream domain did not correspond to a unique
colored region in any of our results (Fig. 2).
Although our results distinguished between the
Alaskan stream domain and the Alaska Gyre area,
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Fig. 3. Upper zone domains of Dodimead et al. (1963) overlaid with regions identified by our classification method for summer pre-1976.

E.J. Gregr, K.M. Bodtker / Deep-Sea Research I 54 (2007) 385–402392
the former was not always distinct from the Bering
Sea shelf or the western Bering Sea/western
subarctic. In addition, our analyses divided the
Dodimead et al. (1963) coastal domain into
numerous regions across the study area, except in
spring pre-1976 and fall post-1976 (Fig. 2), when the
coast was classified as fairly homogenous. Finally,
our results suggested that the single western
subarctic domain was both heterogeneous within
each partition and differed considerably among
seasons and regimes.

The transitional domain was, not surprisingly,
made up of several regions in all partitions.
However its southern extent (the subarctic bound-
ary), which stretches eastward across the Pacific at
about 401N from the Japan coast to about 1501W
and then veers south, was evident in all partitions,
though its location fluctuated by a few degrees
latitude among partitions (Fig. 2).

The location identified as the bifurcation of the
subarctic current (including parts of the central
subarctic and transitional domains) was an area of
high change between seasons and regimes in our
results (as indicated by the pattern of multiple
regions within most partitions—Fig. 2). The pattern
of a northward curve of the northern transition
zone boundary was evident in most partitions as a
boundary between regions and was quite persistent
across partitions, though the precise location
fluctuated.

3.3. Seasonal and regime transitions

In our search for qualitative descriptions of how
oceanic domains change seasonally we found a
single description of how a North Pacific upper zone
domain or water mass shifted in location by season.
Ware and McFarlane (1989) described the average
position of the subarctic current as fluctuating
seasonally between near 501N in summer and
451N in winter. In our post-1976 partitions, the
bright yellow cluster (#15—Fig. 2) straddled 451N
in winter, between 1751W and 1351W, and was
located progressively further north in spring and
summer, when it lay almost completely north of
451N. This cluster may therefore capture the spatial
extents and seasonal movements of the subarctic
current.

The Aleutian Low pressure system, which dom-
inates the climatological winter pattern in the North
Pacific and stretches from Kamchatka to the Alaska
Peninsula, is strongest in the winter and weakens as
it shifts to the northwest in the spring (Ware and
McFarlane, 1989). Our analysis identified a region
(#12, brown—Fig. 2) that corresponded to this
description of location and seasonal shift of the
Aleutian Low in both the pre- and post-1976
partitions. This correspondence may illustrate an
unspecified mechanistic connection between atmo-
sphere and ocean.

Several notable changes related to the 1976–1977
regime shift included a deepening and eastward shift
of the Aleutian Low pressure system resulting in a
stronger flow in the Alaskan Gyre (Benson and
Trites, 2002), a warming of the Northeast Pacific,
especially in a broad band along the North
American coast, the cooling of the central North
Pacific (Hare and Mantua, 2000), and reduced sea
ice extents in the Bering Sea (Wyllie-Echeverria and
Wooster, 1998). The stronger Aleutian Low may be
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Table 1

Kappa index of agreement (KIA) and Average of Mutual

Information (AMI) scores for comparisons of partitions (classi-

fication results) between consecutive seasons within regimes and

between regimes for each season

Regime/season KIA AMI Prop. of Max

Within-regime comparison

Pre-1976

Winter–spring 0.32 2.192 0.56

Spring–summer 0.42 2.222 0.57

Summer–fall 0.38 2.062 0.53

Fall–winter 0.47 2.286 0.59

Mean 0.40

Post-1976

Winter–spring 0.29 2.102 0.54

Spring–summer 0.41 2.185 0.56

Summer–fall 0.50 2.334 0.60

Fall–winter 0.32 2.277 0.58

Mean 0.38

Between-regime comparison

Winter 0.50 2.461 0.63

Spring 0.50 2.310 0.59

Summer 0.47 2.442 0.63

Fall 0.49 2.410 0.62

Mean 0.49

Prop. of max. is the proportion of the maximum theoretical value

(3.906) achieved by the AMI score.
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reflected in the larger, more contiguous brown
region (#12—Fig. 2) in winter post-1976 compared
to pre-1976, especially in the area of the Alaskan
Gyre. Some of the highest variance in the pattern of
regions did occur in the areas of greatest SST
change: in the area where greatest cooling occurred
in winter (between 391N and 441N, from 1701E to
1751W—see Fig. 8a in Hare and Mantua, 2000), a
‘new’ green region (#8—Fig. 2) appeared in our
post-1976 winter partition. Similarly, the Northeast
Pacific coastal areas, where the greatest warming
occurred (see Fig. 8a in Hare and Mantua, 2000),
differed greatly between pre- and post-1976, espe-
cially the size and location of the dark blue and pale
yellow winter regions (#2 and #3—Fig. 2). In
addition, the extent and location of regions on the
eastern Bering Sea shelf differed between pre-1976
and post-1976 winter partitions, possibly indicative
of changes in sea ice cover over time.

3.4. Similarity of oceanic partitions

Visual comparison of the different partitions
showed considerable seasonal and inter-regime
differences. The KIA and the AMI quantified these
differences in terms of the size and location of
regions, and the consistency of the patterns of
regions, respectively. The KIA scores were lower
between seasons in the within-regime comparison
(mpre-1976 ¼ 0.40, mpost-1976 ¼ 0.38) than within a
season across regimes (m ¼ 0.49) (Table 1). There-
fore, patterns for consecutive seasons were consis-
tently more different than the patterns for the same
seasons between regimes. KIA scores comparing
patterns between regimes showed little variation
among season (e.g., ranged from 0.47 to 0.50),
suggesting that any regime shift effects were
manifested equally across the seasonal oceanic
patterns.

While our KIA scores could not be tested for
statistically significant differences (because we did
not compare model results to data), a relative
comparison of the scores for consecutive seasons
implied that fall and winter were more similar
before than after the regime shift. Conversely,
summer and fall were more similar after 1976 than
before (Table 1).

Overall, the AMI scores (Table 1) were consistent
with the KIA results and likewise suggested that any
seasonal pattern was a better predictor of the same
season post-regime shift than it was of the
subsequent season in the same regime. Summer
was a better predictor of fall post-1976, than it was
pre-1976, corroborating the KIA results.
3.5. Biological relevance

The Kruskal–Wallis test score allowed us to reject
the null hypothesis of no difference in [chl-a]
between regions in all four post-regime shift
partitions. When we applied pair-wise comparisons
of regions using the Wilcoxon rank sum test to
identify the region(s) with significantly different
[chl-a] distributions, we rejected the null hypothesis
(that [chl-a] distributions were identical between
regions) when p-values were less than 0.000476. This
corresponded to a Bonferroni-corrected alpha level
of 0.05, for 105 pair-wise comparisons done for each
season (Sokal and Rohlf, 1995). Overall, we failed
to reject 42 pair-wise comparisons in spring, 14
in summer, only 6 in fall, and 13 in winter
(Fig. 4) showing that many regions were signifi-
cantly different from each other in terms of the
distribution of their [chl-a].
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Specifically, our spring season (Jan–Mar) showed
the least differences between clusters, implying a
relatively homogenous [chl-a] distribution through-
out the study area at the scale of these regions.
Exceptions included regions #3 and #11 with high
concentrations, and region #6 with the lowest
concentration (Fig. 5).

Summer showed a distinction developing between
the regions as [chl-a] began to increase in some
regions. Regions #3 and #5 were not statistically
different and, when combined, potentially capture
the spring bloom in the Bering Sea and the Sea of
Okhotsk. Regions #6 and #13 were distinct from all
other regions in this season, though both had very
low [chl-a]. Their location at the southern extent of
our study area (near 301N) strongly implied their
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association with the less productive sub-tropical
gyre.

Regions were most distinct in the fall, with 4
unique regions, 3 of which (#6, #13, and #14) again
showed low chlorophyll concentrations. This was
potentially related to the northward movement of
the Transition Zone Chlorophyll Front in summer
(Polovina et al., 2001). [Chl-a] distributions in
clusters #11 and #12 were not dissimilar and
combined they formed a region with the second
highest chlorophyll concentration. While #11 is
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variables—with possibly different mechanisms—
gave rise to similar [chl-a].

In winter, region #2 expanded to include a large
portion of the eastern coastal region, and the
associated mean chlorophyll concentration doubled
from the previous season (Fig. 5). Regions #3 and
#5 in the Gulf of Alaska and Bering Sea were again
not significantly different from each other and
showed the highest chlorophyll concentrations
(Fig. 5).

4. Discussion

Our results demonstrate that relatively contig-
uous oceanic regions can be identified using decadal
averages of physical oceanographic variables and a
seasonal temporal resolution. Also, these regions
can be related, by size and location, to previously
well-known water masses (e.g., the Alaskan Gyre,
the subarctic current) before and after the
1976–1977 regime shift, and differences between
partitions can be related to seasonal variations in
these water masses. Given the spatial autocorrela-
tion (i.e., spatial coherence) of the input variables,
some homogeneity in the result was to be expected.
Nevertheless, the temporal analysis we conducted
provides insight into the dynamics of these spatial
correlations.

Statistical comparisons using indices of similarity
showed that the seasonal patterns of regions were
more similar between regimes than from one season
to the next within a regime, and indicated differ-
ences in seasonal comparisons before and after the
regime shift. We also found significant correspon-
dence with the spatial distribution of chlorophyll
concentrations, suggesting that the regions identi-
fied by our classification analyses have both
biological and physical relevance.

4.1. Comparison with other classification systems

While the comparison with large-scale classic
domains demonstrates some similarities between the
two maps, differences were also apparent between
our regions and those of Dodimead et al. (1963)
(Fig. 3). This may simply be due to the different
number of regions defined in our analysis (15)
versus the 11 domains identified by Dodimead et al.
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(1963). A higher fidelity with Dodimead et al.’s
(1963) regions may therefore have been achieved by
reducing the number of regions (clusters retained in
the analyses) and/or the number of variables in our
study, and perhaps adjusting the temporal bounds
of the seasons.

However, our objective was not to duplicate any
previous classifications, or to generate a new
classification scheme for the North Pacific. Rather
we wanted to demonstrate the value of identifying
biologically relevant regions for a particular marine
environment, by classifying physical variables in a
spatial context. Thus, while our adaptive classifica-
tion approach likely could, through the selection of
appropriate variables and scales, produce results
similar to Dodimead’s domains or Sherman’s
LME’s, that was not our intent. This is also the
rationale for not including chlorophyll concentra-
tion in the classification scheme, but rather using it
as a test of biological relevance.

4.2. Temporal transitions

While the seasonality of physical properties has
been extensively examined at many locations in the
eastern North Pacific, we have found little published
literature on seasonal changes of water masses. A
notable exception is the work done on meso-scale
eddies in the eastern North Pacific (e.g., Thomson
and Gower, 1998). Our analysis strongly suggests
that marine domains (e.g., Alaskan Gyre, subarctic
current) are less spatially static across time (seasons
and regimes) than is commonly assumed in ecolo-
gical studies. We believe that seasonal transitions
are of crucial biological importance, because essen-
tial life processes of many temperate species are tied
to seasonality. In our within-regime comparisons of
seasonal partitions, a notable difference was in-
creased similarity between summer and fall, and
decreased similarity between fall and winter, pre-
1976 compared to post-1976 (Table 1). This implies
either a change in the magnitude of seasonal
transitions or a change in the temporal boundaries
of seasons. Bograd et al. (2002) investigated the
variable phase and amplitude of seasonal sea level
pressure at two locations in the North Pacific and
concluded that long term changes in the North
Pacific may be associated with changing seasonality.
These seasonal transitions therefore warrant more
ecological attention.

In addition, the equivalence of the similarity
scores in the season to season, between-regime
comparisons (Table 1) implies that the influence of
the studied regime shift was similar across all
seasons. This balanced impact was surprising
because many of the indices of regime shifts in the
North Pacific are dominated by the intensity of the
Aleutian Low (Benson and Trites, 2002); a phenom-
enon with a very pronounced seasonal cycle,
strongest in winter. Our results provide evidence
that seasonal atmospheric influences are manifested
throughout the year. Our approach may therefore
facilitate the ‘discovery’ and description of seasonal
changes and help formulate hypotheses about the
processes involved in seasonal transitions.

4.3. Biological relevance

Several of the boundaries and regions identified in
our study correspond to well-described biogeo-
graphic distributions. The southern boundary of
the transitional domain, evident in all our partitions,
corresponds to a well-documented steep latitudinal
gradient of phytoplankton and zooplankton bio-
mass between 381N and 431N (McGowan and
Williams, 1973). The signature of the Transition
Zone Chlorophyll Front’s (Polovina et al., 2001)
seasonal northward movement in the summer
months could be reflected in the increasing chlor-
ophyll concentrations in region #2 (blue–Fig. 3).

The northern boundary of the transitional do-
main appeared as a boundary in most partitions
although the actual location fluctuated (Fig. 3). This
region has been subject to zoogeographic classifica-
tion (e.g., McGowan, 1971; McGowan, 1974) and
much fisheries oceanography research (Fulton and
LeBrasseur, 1985; Ware and McFarlane, 1989;
Zebdi and Collie, 1995). Ware and McFarlane
(1989) described the transition zone in terms of
three major fisheries production domains, while
Fulton and LeBrasseur (1985) documented inter-
annual variation in the amount of northward versus
southward flow as well as possible effects on some
faunal distributions. Others since have noted that
herring recruitment (Zebdi and Collie, 1995) and
salmon survival (Mueter et al., 2002) patterns are
synchronous within domains but not between
domains. Our results can be seen to bolster the
conclusions of these studies, while application of
our classification approach could help to determine
regional boundaries and defining characteristics for
studies such as these.

Our statistical analysis demonstrated significant
associations between chlorophyll concentrations
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and the oceanic regions identified. This demon-
strates the biological relevance of the patterns
identified by our physically based classification.
We note that three of the surface variables we used
(sea surface temperature, wind stress, and sea
surface height) are related to processes linked to
plankton production. However, our oceanic regions
were based on long-term, seasonal averages of these
physical conditions, for a different decade than the
seasonally averaged chlorophyll concentrations.
Thus, either our results are spurious, or we might
expect that a classification using oceanographic data
contemporaneous with the [chl-a] data may demon-
strate even stronger associations.

Since our classification integrated long-term,
average values, we suggest that the linkages
responsible for the biological correspondence are
related to the persistence and predictability of
particular features important to phytoplankton
production. These features are driven by physical
processes and thus they were ‘captured’ in our
classification results. For example, areas corre-
sponding to higher chlorophyll concentrations
probably represent locations where oceanographic
conditions regularly provide enrichment, concentra-
tion, and/or entrainment features (Bakun, 1996)
that allow plankton blooms to occur on a pre-
dictable basis. While the processes responsible for
plankton production have been studied for decades,
few studies, if any, have mapped the spatial extents
and seasonal variability in the extents of the
underlying processes. This is a critical aspect of
ecosystem-based management that can be addressed
using an adaptive classification approach.
4.4. Characteristics of adaptive classification

Adaptive classification provides enormous flex-
ibility in terms of variable selection, spatial extent,
and resolution. One consequence of this flexibility is
that the resulting region boundaries are dependent
on the nature (mean, variance, etc.) of physical
parameters used and on their spatial and temporal
resolution. Thus, the partitioning of a suite of data
for any region is a somewhat exploratory exercise.
However, the range of options can be narrowed
with a clear statement of objectives since the
appropriate scale of analysis will be best determined
by the questions and species of interest. In fact, the
flexibility of the approach is crucial for linking the
biology to the physics, because species experience
their world at space and time scales relative to their
size and life history.

Constrained only by the need to have compre-
hensive (study-area wide) coverage, the analysis is
also adaptable in terms of the nature (variables and
resolution) of the oceanographic data used. In our
examples we identified self-similar regions based on
mean oceanographic conditions, derived from an
oceanographic model. However, regions could also
be defined on the basis of dynamic oceanography
(i.e., high variance), extreme conditions, or any
other derived characteristic. We are currently
exploring how the inclusion of the temporal
variance of parameters and extreme values, in
addition to means, affects the partitioning. One
testable hypothesis is to investigate whether general-
ist species are more closely associated with regions
based on mean values, and habitat specialists are
more closely associated with regions identified using
extreme values.

Finally, while an association between classified
regions and known species occurrence or habitat
provides an indication that the physically defined
regions have biological relevance, it is worth
considering what the regions actually represent.
This issue is most clearly illustrated by a series
of images such as those showing seasonal change
(Fig. 2). The colored regions generally do not have
similar oceanographic characteristics from one
period to the next—i.e., they do not represent the
same water mass in a different season, and this
raises fundamental questions regarding the nature
of marine ecosystem boundaries: Are marine
ecosystems (relatively) fixed in space, with char-
acteristics that change from season to season? Or do
regions/water masses with consistent characteristics
move around in response to the physics, moving
their associated ecosystems with them? These
questions could be explored by comparing the
similarity of neighboring regions between seasons.
Common marine ecosystem features such as upwel-
ling zones, gyres, fronts, etc., are inherently
ephemeral, and although they occur with repeat-
ability from year to year, there may be considerable
spatial and temporal variance in their location and
composition. The issue of bounding ecosystems in
space and time is a complex one and our classifica-
tion approach, while only scratching the surface,
does provide a means to visualize the spatial and
temporal changes.

In our study, the regions and boundaries were
intimately tied to the issue of scale. The regions
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changed in both their boundaries and composition,
depending on the spatial (i.e., size of the study unit)
or temporal (i.e., seasonal and inter-annual) aggre-
gation. Our approach captures boundaries for a
snapshot in time, which may be a year, a decade, or
longer. However, the boundaries apply only to that
particular (in this case temporal) aggregation. We
suggest that this dynamic approach to marine
ecosystem boundaries may be the most reasonable
representation of ecosystems in the dynamic envir-
onment that is the ocean.

One aspect of the pattern comparison that
remains a challenge is the determination of sig-
nificant differences. While KIA scores can be
evaluated for significant differences (Couto, 2003),
the comparison depends on the use of a reference
image that represents the ‘truth’. Lacking any such a
priori definition, new methods will be needed to
determine if various regions are significantly differ-
ent from one another. It may well be that such tests
of significance are best related back to the biota for
which the regions were defined (i.e., a partition
would be significantly ‘better’ if it was significantly
more correlated with the species, or community of
interest).

4.5. Variable and scale selection

Although selecting the input variables for ex-
ploratory classification analyses such as ours is
complicated, there are several guidelines that we
tried to follow. Variables should be as widely
representative of variation in the domain as possible
(Howard, 1991). In our analysis, we were interested
in mapping the water masses in the surface domain,
so we chose a suite of physical oceanographic
variables that we assumed represented the variation
in this domain. Variables should also be chosen to
reflect the phenomenon of interest. We were
interested in coherent and persistent water masses,
so we chose long-term seasonal mean values for our
parameters. The correspondence of our long-term
regions with primary production showed how
persistent these ecosystems are over time, despite
the relatively ephemeral nature of the biotic
component. If one wished to more precisely capture
domains of primary productivity, it would be
appropriate to aggregate the physical and biological
components at a finer temporal resolution. On the
other hand, if identifying well-mixed zones were the
goal of the analysis, the use of variables such as sea
surface height and current velocities might be
appropriate. Moreover, some variables are more
appropriate than others for particular study areas.
For example, bathymetry is appropriate in an on-
shelf classification, perhaps to depths of around
400m, and around sea mounts, but unless the
species of interest are primarily demersal or benthic,
bathymetry is likely to be less important.

As variables are added, several undesirable
features begin to emerge including multicolinearity
(resulting in the unintentional weighting of certain
features and interactions over others) and the
danger of unnecessary model complexity (Howard,
1991). We chose to ignore any possible effects
due to multicolinearity or autocorrelation for
two reasons. First, despite the common assum-
ptions of stationarity and isotropy (see Haining,
1990), any auto- or cross-correlations are not likely
to be consistent across space with extents such
as ours. Thus, while the signal that identifies regions
of similarity may be enhanced by correlations
between variables in some regions, individual
variables may drive the variability independently
in other regions. Second, there appears to be no
analytical reason to exclude regions of high
correlation (or autocorrelation) a priori, as these
regions may be of interest. The same applies to the
putative problem of unintentional weighting. The
question of unnecessary complexity requires further
research, but could be addressed operationally with
an exploratory approach where results based on
different combinations of variables are examined
and compared.

Selecting the (temporal and spatial) resolution of
the study should also be related to the phenomena
of interest. While data availability plays a role, there
are temporal and spatial aspects to this resolution
question. Temporally, an annual average will have a
poorer correspondence with a two or three week
phenomenon than a monthly or even a seasonal
average because the averaging removes the ephem-
eral peaks of interest. The complication is that the
converse—where a monthly resolution will be less
able to detect a multi-year trend—is also true,
making the selection of temporal resolution of
fundamental importance. Spatially, the question is
more straightforward, since the analysis is best
carried out at the highest resolution possible. The
possibility of over-sampling and masking signals of
interest due to too much detail is, from our
experience, fairly low, and if over-sampling is
suspected, a posteriori aggregation of pixels is a
straightforward task.
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In addition to resolution, spatial extents will also
affect analytical results since the size of the study
area determines the means, variances, and range of
each variable. For example, we initially ran the
clustering algorithm on extents that ran from coast
to coast across the Pacific and from the equator to
651N. In that analysis, most of the variability was
south of 301N, resulting in little discrimination in
the Gulf of Alaska and Bering Sea. By reducing the
extents of our study area, we achieved greater
discrimination in the off-shelf, North Pacific, our
area of interest. The implication is that study area
boundaries should be informed by the objective of
the analysis and possibly by exploratory analyses in
order to capture the appropriate data structure
(data range and variance).

Generally, the identification of region boundaries
of importance for specific species would be en-
hanced by the careful selection of variables, scales
and extents. While this may appear to be the ideal
approach, it is complicated when considering multi-
ple species in ecosystem studies. Things are further
complicated by the trade-off between this increased
specificity and the generality of the results. Classi-
fications based on many averaged properties, like
the examples we presented here, are likely to yield
general regions which, while less likely to be optimal
for any single purpose, do prove sufficient for more
general applications. A classification based on a few
purposefully selected properties, while potentially
optimal with respect to those properties, would also
be of less general use (Sokal, 1974).

The parameterization of an analysis must there-
fore consider this trade-off between specificity and
generality. The selected variables, extents, and
resolution will predispose the relevance of the
subsequent regions to those biological processes
that are related to the selected variables, at the
specified scales. Fortunately, virtually all marine
species operate at several spatial scales during their
life span. Therefore, regions defined at a particular
scale may be biologically meaningful to species at a
corresponding life history stage(s).

Finally, there is no reason comprehensive biolo-
gical variables (e.g., [chl-a]) could not be used as
inputs to this kind of classification approach. This
would be most appropriate if they were believed to
create a context for the species or management
objective of interest. Unfortunately, most biological
data are patchy and thus not suitable for inclusion
as input, but would be valuable correlates to
classification results.
4.6. Applications

Our approach provides a means of visualizing the
inter-annual and seasonal changes in the patterns of
water masses in the oceans. This has implications
for a wide range of research activities including
competition studies, species–habitat relationships,
trophic balance models, ecosystem indicator selec-
tion and use, and the design of sampling programs.
All these activities make (often implicit) assump-
tions about the study area, which is typically defined
by boundaries of convenience (e.g., political, geo-
graphic, or management units) rather than bound-
aries derived quantitatively, based on physics or
ecology. While such boundaries of convenience are
sufficient for some applications, we believe that
quantitatively derived boundaries will be an im-
provement in many cases especially where consis-
tency and repeatability are important.

Studies of spatial overlap and competition
between species are likely to be essential for the
delineation of multi-species marine protected areas.
These are often based on analyses of species–habitat
relationships and predictions of spatial distribution
typically conducted on a spatial grid (e.g., Austin,
2002; Guisan and Zimmerman, 2000; Redfern et al.,
2006). However, the analysis of spatially gridded
data continues to face a number of methodological
hurdles, including the validity of various statistical
methods, the selection of study area boundaries,
and a lack of spatial validation methods. Gregr
(2004) described the problem of sample size and
spatial autocorrelation associated with using grid
cells as the study unit. This problem would be
eliminated by using regions identified in a classifica-
tion analysis as the study units. This would also
have the advantage of making such studies tractable
for larger spatial extents at finer resolution—some-
thing that is constrained when using gridded data
because of the processing requirements of 100s of
thousands of grid cells. Using regions defined from
high resolution grid cells as study units would
effectively trade-off an unmanageable number of
grid cells for a much smaller number of relatively
homogeneous regions.

Studies of species–habitat relationships using spa-
tial data also typically assume that the processes
under study are spatially invariant, meaning that the
relationships identified apply equally throughout the
study area. Since the boundaries of such studies are
commonly based on non-ecological factors, this
assumption may be invalid. A preliminary spatial
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classification of the independent variables to be used
in the species–habitat analysis could provide more
ecologically defensible study area boundaries, and
lend greater validity to the assumption of stationarity.

Species–area relationships developed using more
traditional approaches could also be tested using
classified marine regions because they are, by
definition, regions of similarity. For example, Frank
and Shackell (2001) showed a positive relationship
between the number of finfish species and the total
area of submarine offshore banks, implicitly assum-
ing that all banks provided similar habitat. Quanti-
tative classification could be used to test this
assumption and to refine the analysis by exploring
the relationships between species and the different
regions identified by the classification. The degree of
species overlap in the different regions could also
provide an indication of habitat use and partition-
ing, further informing studies of spatial competition.

Finally, trophic balance models are typically
applied to regions with vague or arbitrarily defined
boundaries and generally lack a spatially explicit
component. These models address the flow of
biomass into and out of the study area using
dispersal or migration values (Christensen et al.,
2004). Combined with our approach, these ‘‘leak-
age’’ parameters could be used as a metric to
identify boundaries with the least leakage for the
area of interest. For example, in a recent effort to
define marine ecosystem boundaries from the
perspective of apex predator, Ciannelli et al.
(2002) calculated the biomass import required for
study areas with three different radii (50, 100, and
150 nm) and found that the 100 nm study area had
the lowest biomass import. They concluded that this
distance represented an ecosystem boundary but
recognized the need to allow for more realistically
shaped boundaries. Our classification approach
may provide a reasonable mechanism to define such
boundaries. Further, by developing a regional
trophic balance model for each of the regions
within a particular partition, ecosystem models
could be extended spatially without resorting to
the computational expense of creating a grid for the
study area (e.g., as with EcoSpace; Christensen
et al., 2004).

Fisheries managers in particular, would benefit
from quantitative, repeatable boundary identifica-
tion for at least two reasons. First, if ecosystem-
based indicators are to be comparable across years
with different oceanographic conditions, a quanti-
tative method to bound regions of comparison
seems essential. Second, fisheries managers in the
US have been mandated to define essential fish
habitat for commercially harvested species since the
Magnuson–Stevens Act was passed in 1996. While
this effort has produced tractable classification
schemes for coral reefs, shallow bays, and estuaries,
it has led to only very general descriptions of habitat
in the pelagic marine environment. If fish species
could be differentially associated with ecologically
significant physical regions—ecoregions—then com-
prehensive habitat maps could be rapidly devel-
oped, tested, and updated over time.

5. Conclusions

Effective ecosystem-based management and the
designation of marine protected areas ultimately
depend on operational definitions of the geographic
area of interest. The approach we demonstrated in
this paper represents a method of combining input
variables to identify regions of similarity and their
boundaries. The method is robust, quantitative, and
adaptable in terms of the spatial and temporal scales
of interest and the range of input variables that may
be used. It applies a minimal set of straightforward
assumptions and integrates the inherent dynamic
nature of our oceans.

We combined variables describing the physical
ocean environment and found that the regions
identified did have biological relevance. To our
knowledge, this is the first report of biological
relevance being quantified in relation to physically
derived patterns (traditionally, the biology of
interest is included in the analysis). We feel this
represents the first step towards a quantitative
description of ecosystem boundaries in the marine
environment that apply across a range of biota
rather than a single species or taxonomic group.

By integrating spatial data on species assemblages
into this approach, which would inherently inte-
grate interactions between and within the biological
and physical components, we may begin to visualize
realistic ecosystem boundaries—as originally envi-
sioned by Tansley (1935). Quantitative classification
appears to be rich with possibilities and has the
potential to significantly benefit both management
and conservation efforts.
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