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Abstract 

 

Biologging tags that record high-resolution tri-axial accelerometry data are proving to be integral 

to the study of foraging ecology of large, free-roaming marine mammals, such as whales. They 

have been applied to a number of baleen whale species that feed pelagically through lunges or 

ram filtration to quantitatively define behaviours and estimate energetic costs. However, few 

behavioural ecology studies using accelerometry data have been conducted on grey whales, a 

unique baleen whale that performs benthic suction feeding. Using suction cup tri-axial 

accelerometer tag deployments on 10 Pacific Coast Feeding Group (PCFG) grey whales along 

the Oregon and Washington coasts, I defined signals of foraging behaviour at both the broad 

state (dive) and foraging tactic (roll event) scales. I then estimated the relative energetic cost of 

these behaviours using energy expenditure proxies derived from the accelerometry data—Overall 

Dynamic Body Acceleration (ODBA; ms-2), stroke rate (Hz), stroke amplitude (radians per s), 

and duration of dives with different foraging tactics performed (min). Hidden Markov Models 

(HMMs) defined three biologically distinct states—forage, search, and transit—using turn angle, 

dive duration, dive tortuosity and presence of roll events. Classification and Regression Tree 

(CART) models best defined the foraging tactics of headstands, benthic digs, and side swims 

using median pitch, depth to body length ratio, and absolute value of the median roll. These 

definitions of grey whale foraging signals using accelerometry data add to the quantitative 

descriptions of foraging behaviours previously described for baleen whales. Stroke rate identified 

foraging and headstanding as being the most energetically costly activities at the broad state and 

foraging tactic scales. These findings contribute to the foundational understanding of grey whale 

foraging energetics needed to assess the impacts of various conservation concerns on the fitness 

and interpret patterns of behaviour choice of this unique group of grey whales.  
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Lay Summary 

 

Suction cup tags that record fine scale behaviour are important tools for studying baleen whales. 

However, this technology has not been used to describe the behavioural energetics of grey 

whales, a unique species of baleen whale that feeds on the sea floor. I used data from suction cup 

tags deployed on Pacific Coast Feeding Group (PCFG) grey whales to define foraging 

behaviours and estimate the relative energetic cost of these behaviours. My work adds to the 

quantitative definitions of foraging behaviours previously described in baleen whales and 

provides a foundational understanding of grey whale foraging energetics. These findings can 

help explain patterns of behavioural choices made by PCFG grey whales.  
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Chapter 1: General introduction 

Behaviour mediates how individuals interact with other individuals and their 

environment. As such, understanding a species’ behavioural ecology is fundamental to 

determining the fitness implications of behaviour choice on a population. More specifically, 

behavioural ecology can provide a framework to understand the impact of human disturbance 

and overexploitation, explain the ecology of fear, determine locations of critical habitat, and 

predict responses to climate change (Dill, 2017), all of which are critical pieces of information to 

inform conservation efforts.  

Feeding, fleeing, fighting and reproduction are the four F’s representing the main 

components of behavioural ecology. Foraging behaviour has the added significance of being the 

only time that energy is being consumed to compensate for the energy expended during all other 

activities, including the foraging behaviour itself (Norberg, 1977). Foraging success determines 

body condition, which in turn affects reproductive output and ultimately population success 

(Lemos et al., 2020a). Therefore, not only is it important to be able to define foraging behaviour 

of a species, but it is also necessary to determine the cost of foraging, as this knowledge can 

ultimately be used to assess the impacts of threats and disturbance on a population.  

Studying the behavioural ecology of marine animals, such as cetaceans, is challenging 

given the logistical constraints of species that perform most of their behaviours underwater. This 

has necessitated technological developments to undertake more in-depth behavioural studies 

(Nowacek et al., 2016).  Unoccupied Aerial Systems (UAS; aka drones), for example, have 

progressed the study of cetacean behaviour beyond land- or boat-based focal follows by 

extending the observation capacity by a factor of three (Torres et al., 2018). However, observing 

behaviour from drone footage is constrained by water clarity, depth of the animal, and daylight 

observation, necessitating use of more advanced tools.  

Not only is it logistically challenging to observe and classify cetacean behaviours, it is 

also difficult to estimate metabolic cost of behaviours in cetaceans. Two methods commonly 

used to measure the metabolic rates of small species of marine mammals, respirometry (Withers, 

1977) and doubly labeled water (Schoeller and van Santen, 1982) require re-capturing an animal 

(doubly labelled water method) or obtaining measurements of gas exchange in a controlled 

environment (respirometry), both of which are logistically challenging when working with free-
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ranging, large-bodied cetaceans. Estimates of energy expenditure can also be obtained from heart 

rate, but also requires a controlled environment for calibration that is difficult if not impossible to 

obtain in large diving marine mammals (Butler et al., 2004; Green, 2011). Respiration rate has 

thus become the most commonly applied method to estimate metabolic rate in cetaceans, 

although it requires many assumptions that can lead to inaccurate estimates (Fahlman et al., 

2016).  

Despite the challenges of studying the foraging behaviour and energetics in whales, the 

vulnerable state of many cetacean populations recovering from industrial whaling (Magera et al., 

2013) makes understanding cetacean behavioural ecology and energetics vital for interpreting 

population dynamics of these species and informing management decisions.  

Biologging methods in baleen whales 

The development of biologging tags has revolutionized behavioural studies in cetaceans 

due to high frequency sampling rates and integration of multiple sensors (i.e., accelerometers, 

magnetometers, and gyroscopes) that allow for fine scale detection of behaviours and provide a 

minimally invasive means to estimate energy expenditure (Crossin et al., 2014; Watanabe and 

Goldbogen, 2021). Biologging tags do not face the daytime-only constraint that limits visual 

focal follows (e.g., Schwarz et al., 2021) and allow for the observation of the individual without 

needing a research vessel to be near the whale, which could potentially disrupt the observed 

behaviours. Additionally, given that most cetacean foraging behaviours occur at depth, the 

ability of biologging tags to record throughout a dive cycle provides unique and critical data that 

is not possible to collect from focal follows, even from drones (Wright et al., 2017).  

Overall Dynamic Body Acceleration (ODBA) as a measure of body movement (Wilson 

et al., 2020) and stroke rate (Williams and Maresh, 2015) are helpful proxies for energy 

expenditure that are derived from accelerometry data. Higher ODBA and higher stroke rate 

correspond to elevated energetic costs and can be used to estimate metabolic rate when linked 

with oxygen consumption. ODBA has been linked to metabolism in many studies (Allen et al., 

2022; Fahlman et al., 2013; Halsey et al., 2009; Jeanniard-du-Dot et al., 2017; John, 2020; 

Wilson et al., 2006). Stroke rate is more commonly linked to metabolic rate for cetaceans than 

ODBA, although most studies have primarily focused on odontocetes and pinnipeds (Allen et al., 
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2022; Isojunno et al., 2018; Jeanniard-Du-Dot et al., 2016; Maresh et al., 2015; Martín López et 

al., 2015). 

High-resolution accelerometry data from biologging tag deployments have proven useful 

for understanding the behavioural ecology of baleen whales. For example, biologging 

instrumentation and data have elucidated how the lunge feeding behaviour of rorquals (i.e., 

humpback, fin and blue whales) occurs in four phases (Cade et al., 2016; Shadwick et al., 2019), 

while the ram filtration behaviour of balaenids (i.e., right and bowhead whales) is linked to an 

optimal swim speed (Simon et al., 2009). Using tri-axial acceleration to describe the specialized 

foraging behaviours of these baleen whales has revealed behavioural patterns, as well as the 

energetic consequences of these behaviours (Goldbogen et al., 2012; Potvin et al., 2012) and 

exposure to threats feeding whales face based on their behaviour (Constantine et al., 2015; Ware 

et al., 2014).  

Accelerometry-derived energy expenditure have benefited conservation efforts by 

estimating the energetic cost of entanglements from increased drag (van der Hoop et al., 2017) 

and increasing the precision of prey requirements estimated from bioenergetic models (Brodie et 

al., 2016). However, despite the clear advantage to utilizing biologging data when studying 

baleen whales, there has been no attempt to use high-resolution accelerometry data to aid in the 

study of grey whale foraging energetics. 

Grey whale ecology and previous energetics research 

Grey whales (Eschrichtius robustus) are a primarily benthic-feeding baleen whale species 

that inhabit the North Pacific Ocean. They belong to three populations: 1) the Western North 

Pacific (WNP) population that feeds off the coast of Russia and breeds in the lagoons of Baja 

California, Mexico, with some individuals potentially breeding in the South China Sea 

(estimated population size of 230 individuals; Cooke et al., 2019); 2) the Eastern North Pacific 

(ENP) population that feeds in the Arctic and breeds in the Mexican lagoons (estimated 

population size of 17,000 individuals; Eguchi et al., 2022); and 3) the Pacific Coast Feeding 

Group (PCFG) that is a subset of the ENP population, which stops short of the Arctic to feed in 

Pacific Northwest waters, and also breeds in the Mexican lagoons (estimate population size of 

212 individuals; Harris et al., 2022).  
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The dominant prey of grey whales varies between foraging grounds. ENP and WNP grey 

whales feed primarily on amphipods in their Arctic foraging ground (Moore et al., 2022; Nerini, 

1984). In contrast, PCFG grey whales appear to primarily target epibenthic swarming mysids in 

the Pacific Northwest foraging (Feyrer and Duffus, 2011; Newell and Cowles, 2006), although 

this group of whales also feeds on a variety of prey including crab larvae and amphipods 

(Darling et al., 1998; Hildebrand et al., 2022). Grey whales employ a suction foraging behaviour 

that is unique in baleen whales (Goldbogen et al., 2017, 2013; Nerini, 1984).  

Recent drone-based observations of PCFG grey whale behaviour established an ethogram 

including four distinct foraging tactics (Torres et al., 2018). One of these tactics is headstands, 

where the whale is positioned vertically in the water column with head down-fluke up, and 

another is side swims, where the whale is swimming rolled on its side (Torres et al., 2018), 

which further illustrates the unique foraging ecology of this group of grey whales. However, due 

to visibility limitations, the drone ethogram does not include benthic digs, the traditional 

foraging tactic performed by ENP and WNP grey whales where the whale rolls onto its side, and 

plows through the sediment to suction up benthic prey while leaving feeding pits in the seafloor 

(Johnson and Nelson, 1984; Nerini, 1984).  

The variety of foraging behaviours used by PCFG grey whales appear to be a function of 

grey whale body length (Bird et al., in prep) and the type and density of prey consumed 

(Hildebrand et al., 2022). Prey quality is known to be similar if not higher in the PCFG foraging 

range than in the Arctic foraging grounds (Hildebrand et al., 2021), providing insight to the 

potential energetic gain from PCFG foraging. PCFG grey whales are also known to be shorter 

(Bierlich et al., 2023) and have lower, more variable body condition (Akmajian et al., 2021; 

Torres et al., 2022) than ENP grey whales. However, no study has considered the role of 

energetic cost of different foraging tactics in the choice of foraging tactic utilization.  

The dependence of grey whales on benthic prey restricts them to feeding in shallow, 

coastal habitats where individuals are often in close contact with humans. The PCFG grey whale 

population especially has many major port cities of the Pacific Northwest in its foraging range. 

As a result, the major threats facing PCFG grey whales differ from those facing ENP and WNP 

grey whales.  Most notably, human-related activities are suspected of reducing the ability of 

individual PCFG whales to obtain sufficient prey to meet their energetic needs.  
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Threats facing the PCFG population include disturbance of the benthos in PCFG feeding 

habitat due to expanding coastal infrastructure that may alter benthic productivity (COSEWIC, 

2017). Similarly, boating disturbance from whale watching and other recreational vessels may 

also reduce the time and locations available for PCFG grey whales to feed (COSEWIC, 2017; 

Duffus, 1996; Sullivan and Torres, 2018). Additionally, risk of vessel strikes and entanglement 

may negatively impact the ability of PCFG grey whales to obtain sufficient energy (Scordino et 

al., 2020; Silber et al., 2021). Anthropogenic climate change poses another threat to PCFG grey 

whales as environmental changes such as marine heatwaves alter the zooplankton prey 

communities and negatively impact the ability of the population to replenish energy stores 

(Lemos et al., 2020a, 2020b). High rates of microplastic ingestion from the benthic suction 

feeding of grey whales can lead to lower nutrient absorption and bioaccumulation of toxic 

materials in individuals (Torres et al., 2023).  

The identified threats facing PCFG grey whales are compounded by the documentation of 

two grey whale Unusual Mortality Events that have affected all grey whales in the North Pacific 

(UMEs; 1999-2000 and 2019-present) over the past two decades (Gulland et al., 2005; Raverty et 

al., 2020; Scordino et al., 2023) —and have been linked to malnutrition (Christiansen et al., 

2021; Le Boeuf et al., 2000; Moore et al., 2003; Perryman et al., 2002; Perryman et al., 2020). 

The consequences of anthropogenic threats and elevated conservation concern for grey whales 

illustrate the need to understand foraging energetics of PCFG grey whales.  

Evaluating the energetic consequences of anthropogenic threats on grey whales requires 

knowledge of fine-scale foraging behaviour. Unfortunately, foraging ecology studies of PCFG 

grey whales have so far been largely limited to day-time only focal follows that record broad 

behavioural states (e.g., forage, travel, rest) and lack fine scale details of foraging tactics 

performed within each dive (Hildebrand et al., 2022; Mallonee, 1991; Stelle et al., 2008; Sullivan 

and Torres, 2018; Wursig et al., 1986). Drone-based observations have provided finer-scale 

information, but have been limited by water clarity and battery capacity (Torres et al., 2018). The 

lack of behavioural definitions, descriptions of behavioural budgets, and behavioural energetic 

estimates has excluded PCFG grey whales from previous grey whale bioenergetics models and 

analyses that assist with management decisions (Agbayani, 2022; Villegas-Amtmann et al., 
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2017, 2015). Obtaining fine-scale behavioural specific measures of energetic cost will allow 

more informed estimates of energetic cost of behaviours to be calculated for this species.  

Thesis objectives  

I used data from suction cup biologging tags with high-resolution accelerometers 

deployed on PCFG grey whales along the Oregon coast, USA to define grey whale foraging 

behaviour (Chapter 2) and estimate relative energetic costs of each behaviour (Chapter 3).  

In Chapter 2, I quantified foraging signals in the biologging data at the broad state scale 

(e.g., forage, search, transit) using Hidden Markov Models and the foraging tactic scale (e.g., 

headstand, benthic dig, side swim) using Classification and Regression Trees. I then compared 

the foraging signals identified in grey whales to those previously used to describe foraging 

behaviour in other species of baleen whale. I expected the biologging data to use accelerometry-

derived metrics similar to the residence in space and time framework used to distinguish between 

broad states in previous focal follow studies (Hildebrand et al., 2022; Sullivan and Torres, 2018) 

and the qualitative descriptions of body position used in drone ethograms (Torres et al., 2018) to 

distinguish between foraging tactics. In addition, I expected grey whale foraging will be 

predominantly benthic with periods showing the whale rolled on its side (Nerini, 1984). Finally, 

I expected the foraging signals from the grey whale biologging data to differ from the foraging 

signals described for other baleen whale species given the unique benthic suction feeding 

mechanism of grey whales (Goldbogen et al., 2017; Nerini, 1984).  

I estimated the relative energetic cost of foraging for PCFG grey whales in Chapter 3 

using the definitions of foraging behaviour identified in Chapter 2. I calculated multiple energy 

expenditure proxies from the accelerometry data, including ODBA (ms-2), stroke rate (Hz), 

stroke amplitude (radians per s), and duration of dives (min) where different foraging tactics 

were performed, to estimate the relative energetic cost of foraging behaviours. I expected forage 

to be the most energetically expensive broad state as the whale must maneuver to capture elusive 

prey within a prey patch. In contrast, I expected transit to have the lowest energetic cost because 

it is a broad state with highly directional movement and a minimum cost of transport to increase 

swimming efficiency (Williams and Maresh, 2015). I further expected side swims to have the 

highest energetic cost compared to benthic digs and headstands given 1) recent evidence 

demonstrating an ontogenetic shift in PCFG grey whales from side swims to headstands with 
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maturity (Bird et al., in prep) and 2) benthic digs are the assumed primary foraging tactic of grey 

whales, especially in the Arctic foraging grounds (Nerini, 1984).  

My research is the first to calculate biologging-derived estimates of energy expenditure in 

grey whales. It is therefore a starting point to using accelerometry-derived proxies in the field of 

energetics. My thesis also provides a foraging-energetics means to assess and mitigate the 

impacts of threats and disturbance facing grey whales.  
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Chapter 2: Detecting grey whale foraging signals in biologging data 

Summary 

Biologging tags that record high-resolution accelerometry data have quantitatively described 

lunges and continuous ram filtration behaviours in foraging baleen whales. However, foraging 

behaviours have not been similarly quantified for grey whales. We deployed suction cup 

biologging tags on Pacific Coast Feeding Group (PCFG) grey whales along the Oregon coast to 

quantify signals of foraging behaviour at both the broad state (dive) and foraging tactic (roll event) 

scales. Hidden Markov Models (HMMs) at the dive scale identified three biologically distinct 

states—forage, search, and transit—defined using turn angle, dive duration, dive tortuosity and 

presence of roll events. Classification and Regression Tree (CART) models best defined the roll 

events into foraging tactics used by grey whales (headstands, benthic digs, and side swims) based 

on body position variables (median pitch, depth to body length ratio, and absolute value of the 

median roll). These definitions of grey whale foraging signals using accelerometry data add to the 

quantitative descriptions of foraging behaviours previously described for baleen whales. The 

foraging behaviour signals of PCFG grey whales provide a means to examine the link between 

energetics and the physiological impact of threats (e.g., vessel disturbance and pollution) facing 

this group.  

Introduction 

High-resolution tri-axial accelerometry data from biologging tags have quantified the 

foraging kinematics and behaviour of many baleen whales (Cade et al., 2016; Goldbogen et al., 

2017, 2013; Shadwick et al., 2019; Simon et al., 2009). Most notably, data from biologging 

instruments show that the lunge feeding behaviour of rorquals (i.e., humpback, fin and blue 

whales) occurs in four phases (Cade et al., 2016; Shadwick et al., 2019), while the ram filtration 

behaviour of balaenids (i.e., right and bowhead whales) requires optimal swim speeds (Simon et 

al., 2009). Tri-axial acceleration data can thus identify behavioural patterns, and can also be used 

to determine the energetic costs of these behaviours (Goldbogen et al., 2012; Potvin et al., 2012), 

and assess exposure to anthropogenic threats during foraging (Constantine et al., 2015; Ware et 

al., 2014).  

Despite the success defining ram filtration and lunge feeding with biologging data, 

suction feeding, which is only performed by grey whales (Eschrichtius robustus) has yet to be 
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quantitatively described. Grey whales are primarily benthic or epi-benthic feeders that make up 

three populations. Two populations, known as the Western North Pacific (WNP) and Eastern 

North Pacific (ENP) populations, consume mostly amphipods that live in sandy substrates 

(Moore et al., 2022; Nerini, 1984)—while a third, the Pacific Coastal Feeding Group (PCFG) 

primarily consume epibenthic swarming mysids (Feyrer and Duffus, 2011; Newell and Cowles, 

2006), although this group of whales also feeds on a variety of prey including crab larvae and 

amphipods (Darling et al., 1998; Hildebrand et al., 2022). PCFG grey whale foraging is often in 

association with reef habitat with and without kelp, although observations of sediment 

expulsions from the mouth following dives have also been recorded (Bird et al., in prep; Torres 

et al., 2018; L. Torres pers. obs.). All three populations employ a suction foraging behaviour that 

is unique among baleen whales (Goldbogen et al., 2017, 2013; Nerini, 1984) and is characterized 

by rolling to one side (usually the right) during the bottom phase of the dive, often in association 

with a negative pitch where the mouth is angled towards the benthos (Woodward and Winn, 

2006).  

To date, traditional and drone focal follows of PCFG grey whales during day-light hours 

have documented four broad behavioural states (forage, travel, rest and social) and four foraging 

tactics (e.g., headstands, side swims, upside down swims, and open mouth at the surface) 

(Hildebrand et al., 2022; Mallonee, 1991; Stelle et al., 2008; Sullivan and Torres, 2018; Torres et 

al., 2018; Wursig et al., 1986). Unfortunately, visibility limitations have precluded observing 

benthic digs, the traditional foraging tactic of grey whales (Nerini, 1984) whereby individuals 

roll onto their side, plow through the sediment to suction up benthic prey, and leave feeding pits 

in the seafloor (Johnson and Nelson, 1984; Nerini, 1984).  

Biologging tags with tri-axial accelerometers deployed on foraging grey whales may be 

able to overcome the current limitations of surface observations by recording body position 

metrics, such as pitch and roll, to quantitatively define foraging tactics (Brown et al., 2013). 

These data can also be used to define behavioural states and determine behavioural budgets that 

include underwater activities, which are needed to determine the energy requirements of grey 

whales and assist with management decisions (Agbayani, 2022).  

We deployed minimally-invasive suction cup biologging tags equipped with tri-axial 

accelerometers on PCFG grey whales on their foraging grounds in coastal waters of Oregon and 
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Washington, USA. We subsequently used Hidden Markov Models to quantitatively describe 

broad behavioural states (e.g., forage, search, travel), as well as Classification and Regression 

Trees to define foraging tactics performed during each dive. We also compare these biologging-

derived definitions of foraging behaviour in grey whales to previously described foraging 

behaviour of other baleen whale species. Our analyses of the tri-axial accelerometry data yield 

rigorous, quantitative definitions of the primary  behavioural states and multiple foraging tactics 

of grey whales, thus adding to the quantitative descriptions of baleen whale foraging behaviours  

that previously lacked grey whale data. Our work also provides baseline data needed to estimate 

the energetic cost of foraging and assess the impacts of threats on the foraging behaviour of this 

unique group of grey whales.  

Methods 

Data collection 

Suction cup Custom Animal Tracking Solution (CATS; https://cats.is) video and inertial 

measurement unit (IMU) tags were deployed on grey whales from rigid hulled inflatable boats 

using an 8-m carbon fiber pole in August 2021, and July and September 2022 off the Oregon 

Coast between Waldport (44.418326, -124.092222) and Depoe Bay (44.835057, -124.064164). 

The timing and location of tagging efforts ensured that only PCFG grey whales, those observed 

in multiple years between 41oN and 52oN from 1 June to 30 November (International Whaling 

Commission, 2011), were included in the deployments. CATS tags were attached to the whales 

using 4 suction cups with oxidizing releases to ensure the tags released after suction failed. Tags 

were recovered using VHF (2021 & 2022) and Iridium signals (2022). The CATS tags integrated 

a video camera, hydrophone, 400 Hz accelerometer, 50 Hz magnetometer and gyroscope sensors, 

and 10 Hz pressure, temperature, light, and GPS sensors. All tag deployments were carried out 

under NOAA/NMSF permit #21678. The University of British Columbia Animal Care 

Committee approved the field work under permit #A21-0254.  

An additional CATS tag deployment from a PCFG grey whale off Cape Flattery, 

Washington (48.3127, -124.6858) in September 2019 (J. Calambokidis, unpublish. data) was 

included in this analysis as this individual was previously sighted in the Oregon study area 

between Waldport and Depoe Bay (2016 (n = 1), 2017 (n = 4), 2018 (n = 5), L. Torres, 

unpublish. data), and was observed to be foraging in similar nearshore reef habitat with kelp as 

https://cats.is/
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the tags deployed in the Oregon Coast study area. Therefore, this deployment can complement 

the other tags deployed in this study to increase the sample size for analysis. 

The tagged animals were identified using photo identification through comparison to 

PCFG grey whale catalogues held by the Geospatial Ecology of Marine Megafauna Lab at 

Oregon State University and Cascadia Research Collective (Olympia, Washington, USA). 

Genetic sex information was obtained for known individuals using previously collected tissue 

samples (Lang et al., 2014). A DJI Inspire 2 quadcopter with a Zenmuse X5 camera with a Micro 

Four Thirds (17.3 x 13 mm) sensor, 3840 x 2160-pixel resolution, a 25 mm focal length lens, and 

a Lightware SF11/C laser altimeter for recording altitude was used to conduct Unoccupied Aerial 

System (aka drone) focal follows of tagged animals.  

Drone photogrammetry was used to calculate total length (TL; m) and body area index 

(BAI) measurements of tagged animals. TL was calculated as length from rostrum to fluke notch 

using MorphoMetriX (Torres and Bierlich, 2020). Asymptotic TL for PCFG grey whales is 

reported to be 12 m (Bierlich et al., 2023). BAI is a measure of body condition with low 

uncertainty that was calculated as surface area of the whale between 20% and 70% of the whale 

length and normalized by the total length of the individual (Bierlich et al., 2021; Burnett et al., 

2018). Measurements of BAI for PCFG grey whales along the Oregon Coast range from 19.18 to 

32.71 (mean = 26.79 ± 2.42 (s.d.), n = 374; K. Bierlich unpublish. data). The drone was used 

following previously established field methods (Bierlich et al., 2023; Lemos et al., 2020a; Torres 

et al., 2022). If a drone flight was unable to be conducted during tagging field work, drone 

photogrammetry measurements were obtained from flights within 15 days of tag deployment.  

CATS tag data processing 

All video and sensor data from the CATS tags were downloaded and imported into 

MATLAB (MathWorks v2021a) where they were pre-processed to align clock times, correct tag 

slips, and ensure sensor orientation in the whale frame (Cade et al., 2021). Pressure spikes from 

animals hitting the tag against the seafloor during benthic rolling behaviours were removed 

during this pre-processing stage and replaced with a linear interpolation of the pressure sensor 

data. All subsequent analysis of pre-processed data was conducted in R v4.2.3 (R Core Team, 

2023).  
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1Figure 2.1. Example of pre-processed data derived from CATS tag deployment on a PCFG grey whale that 

was used to manually audit the dives and roll events.  Note how inflection points were used to define the start 

and end of roll events. 

 

The pre-processed data were manually audited to identify dives and periods of high roll 

(hereafter referred to as roll events) in the catsr package (Czapanskiy, 2022). Audits were 

performed using pressure sensor data for dives and roll data calculated from the X-axis of the 

accelerometry data for roll events. The first 15 minutes of each deployment were excluded to 

remove any influence of tagging on whale behaviour. Dives were defined as periods where the 

depth was greater than 1 m for longer than 30 sec, which eliminated short submergence periods 

during blow intervals where the whale remained close to the surface to maximize oxygen 

utilization for each breath (Sumich, 1983) and there was little potential for foraging activity 

(Stelle et al., 2008).. Periods of high roll ( > 0.5 radians) were of interest as previous studies of 

grey whale foraging behaviour indicate that these animals often feed on their sides (Nerini, 1984; 

Torres et al., 2018; Woodward and Winn, 2006). Co-occurring video data from the tags were 

used to confirm this association by looking for evidence of foraging (e.g., sediment plumes, high 

density of zooplankton prey) during periods of high roll. Roll event start and stop times were 

determined as the first and last points of inflection in the elevated roll signal to exclude 

transitions into the roll events (Figure 2.1). By auditing dives and roll events, a multiscale 

classification of behaviour was conducted with dives corresponding to broad states and roll 

events corresponding to foraging tactics. 
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Pseudotracks, with an assumed average speed of 1.5 m/s, were constructed using the 

tagtools package (DeRuiter et al., 2022) to create a dead-reckoned track from the biologging 

speed and accelerometry data. An assumed average speed was used as PCFG grey whales did not 

achieve steep enough pitches during their dives to accurately calibrate the speed derived from 

acceleration as has been applied for other baleen whales (Cade et al., 2021). However, this 

assumption did not affect the relative positions of the individual along points of the pseudotrack 

or the tortuosity of the path taken by the individual (Wilson et al., 2007). The pseudotracks were 

used to determine the relative position at dive start times along the path the whale took during 

the deployment.  

Descriptive summary metrics were calculated for each dive and roll event to differentiate 

between behaviours at each scale. Summary metrics were calculated using the tagtools package 

(DeRuiter et al., 2022). At the dive scale, these metrics included dive duration (s; the amount of 

time spent submerged from the start of the dive to the end), maximum dive depth (m; the deepest 

depth from the pressure sensor on the CATS tag), surface recovery period (s; duration of time at 

the surface from the end of the dive to the start of the next), ratio of surface to dive time (the 

ratio of the surface recovery time following the dive to the dive duration), the proportion of time 

during the dive spent in roll events, presence of roll events (i.e., if a roll event occurred during 

the dive), change in heading between dive start and dive end (degrees), and dive tortuosity (a 

unitless ratio of the stretched-out track length of the dive relative to the actual distance covered 

in the dive, ranging from 0 for movement in a perfectly straight line and 1 for extremely 

circuitous movement). At the roll event scale, these metrics included duration of the roll event (s; 

the time from the start of the high roll period to the end), maximum depth (m; the deepest depth 

from the pressure sensor on the CATS tag), depth to body length ratio (i.e., the depth of the 

animal from the CATS tag divided by the total length of the animal), absolute value of the 

median roll (degrees), absolute value of the ratio of the median roll to maximum roll, median 

pitch (degrees), change in heading between start of the roll event to the end (degrees), and 

relative speed (see Appendix D for further description). The depth to body length ratio used 

measurements of total length calculated from drone photogrammetry and was used to examine 

the potential limitation water depth may pose to foraging tactic use by grey whales that feed in 

nearshore habitats where the water depth is often shallower than the total lengths of the whales.  
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Behavioural classification 

0.1.1.1 Broad states—Hidden Markov Models 

Hidden Markov Models (HMMs) are a class of state-space models that use characteristics 

of the observed data (in this context, an animal’s movement metrics) to classify a time series of 

underlying states while accounting for temporal autocorrelation (Morales et al., 2004). In 

ecology, these latent statistical states are then interpreted as the broad behavioural states of the 

individual. Here, we used the tag data to inform multivariate HMMs, using dives as the unit of 

analysis. The dive scale of analysis allowed for variable dive duration to be accounted for when 

determining broad behavioral states yet precluded the ability to detect surface behaviors (such as 

a possible resting behaviour) in the model. In particular, we aimed to classify forage, search, and 

transit states, which have been identified in previous PCFG grey whale focal follow studies 

(Hildebrand et al., 2022; Stelle et al., 2008; Sullivan and Torres, 2018). HMMs were fitted using 

the momentuHMM package (McClintock and Michelot, 2018). 

Data streams were selected from the descriptive summary metrics calculated at the dive 

scale. The selection of data streams included in the model was guided by existing cetacean 

multivariate HMMs (DeRuiter et al., 2017), and modified in light of what is known about PCFG 

grey whale ecology. Specifically, we examined the histogram of each movement metric (see 

Appendix A for histograms) and selected those that had the most obvious breaks in their 

distribution, while ensuring there was no redundancy in their characterization of states (e.g., roll 

presence and proportion of dive spent rolling both describe the presence of a foraging tactic, so 

only one was included in the model). A discrete random effect of individual whale was not 

included due to the low sample size of deployments (McClintock, 2021).  

The final set of data streams included in the HMM, and their distributions, are listed in 

Table 2.2. Step length was not included in the HMM due to its correlation with dive duration 

and mismatch with the dive time scale chosen for this model, as step length works best with a 

standard time interval as the unit of analysis (E. Pirotta pers. comm.). Maximum dive depth was 

also excluded from the model because it failed to identify the desired broad states (see Appendix 

B for preliminary models). Finally, the surface recovery period was removed from the model as 

we were unable to distinguish if the period at the surface is a recovery from the previous dive or 

preparation for the next. Two- and three-state HMMs were compared to determine if search 
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behaviour was distinguishable as a separate state using the biologging data. The final number of 

states to include in the model was chosen according to the suggestions of Pohle et al. (2017), 

including assessment of pseudo-residuals and biological relevance (see Appendix C for pseudo-

residual plots). 

To avoid convergence at local maxima, the HMMs were re-fit with random perturbations 

in the starting parameter values. The Viterbi-algorithm was used to estimate the most likely 

sequence of broad behavioural states (Zucchini et al., 2016).  

0.1.1.2 Foraging tactics—Classification and Regression Trees 

Classification and Regression Tree (CART) models are supervised machine learning 

algorithms that were used to define different foraging tactics in the biologging data. A subset of 

the roll event data (n = 236) were visually classified into foraging tactics using the TrackPlot 

data from the tag deployments (see Appendix E for further description of validation method) 

based on established qualitative descriptions of foraging tactics from drone observations (Torres 

et al., 2018) to check body orientation. Headstands, benthic digs, and side swims were observed 

in the biologging data. These visually classified events were split 80:20 into training and testing 

data sets. 

Histograms of the summary metrics calculated for roll events were examined for each 

visually classified foraging tactic to determine the metrics with the clearest splits between the 

tactics (see Appendix F for histograms); these metrics were then applied as input variables in 

the CART model. The chosen metrics included median pitch (degrees), absolute value of the 

median roll (degrees), and the depth to body length ratio. A more extreme negative median pitch 

indicated the individual was positioned more vertically in the water column with rostrum angled 

down in the sediment, while a median pitch closer to 0 indicates the individual was more 

horizontal. A higher absolute value of the median roll indicated that the individual was turned 

more on its side. A depth to body length ratio less than 1 indicated the roll event occurred at a 

depth that was shallower than the individual’s total length. There was no need to determine 

correlation between the metrics as CART models account for collinearity.  

A CART model was constructed using the training data. The rpart (Therneau and 

Atkinson, 2022) and rpart.plot (Milborrow, 2022) packages were used to build and visualize the 

classification tree. A pruned tree was also constructed using the minimum error of the 
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complexity parameter to create a more parsimonious model. The predictive accuracy of the 

CART model was evaluated using the testing data. A confusion matrix was generated to select 

the most accurate model. If the accuracy tests were the same between the original and the pruned 

model, the simplest model was selected.  

A concern with CART models is over-sensitivity to the training data used to build the 

classification tree. Therefore, bootstrap aggregation (bagging) with 1,500 iterations of the CART 

model was conducted using the ipred package (Peters and Hothorn, 2023). The out of bag error, 

or prediction error, was calculated and an accuracy test on the confusion matrix was conducted to 

confirm the ability of the best CART model to assign foraging tactics given the complexity of 

interpreting results from bagged classification trees. The splitting rules from the most accurate 

CART model were then used to assign the non-visually classified roll events (n = 1,654) to a 

foraging tactic.    

Behavioural budgets  

Proportional activity budgets were calculated at the dive and roll event scale for all 

deployments combined and for each individual deployment. At the dive scale, the amount of 

time spent at the surface was compared to the amount of time at depth. The proportion of surface 

time was calculated as the sum of surface recovery periods for each deployment and divided by 

the total deployment duration, while the proportion of time at depth was calculated as the sum of 

the dive durations for each deployment, divided by the total deployment duration.  

Proportional activity budgets were compared between day and night where day was 

assumed to be between 06:00 and 20:00 Pacific Daylight Time, based on the average sunrise and 

sunset times for Newport, Oregon in the summer (https://weatherspark.com/y/344/Average-

Weather-in-Newport-Oregon-United-States-Year-Round).  

Grey whales are known to have lateralization of their foraging behaviours (Woodward 

and Winn, 2006). Therefore, the sidedness of foraging tactics was examined across tagged 

individuals. Sidedness was coded as a binary variable with 0 indicating a left-sided roll 

(individual’s left side is down) and 1 indicating a right-sided roll (individual’s right side is 

down). Differences in sidedness values were explored between day and night.  

 

 

 

https://weatherspark.com/y/344/Average-Weather-in-Newport-Oregon-United-States-Year-Round
https://weatherspark.com/y/344/Average-Weather-in-Newport-Oregon-United-States-Year-Round
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1Table 2.1. Biologging CATS tag deployment information for 10 PCFG grey whales tagged in 2019, 2021, and 

2022. 
Deployment 

ID 

Genetic 

Sex 

Tag on Tag off 

 

 

 

Tag on 

location 

Deployment 

length 

(hh:mm:ss) 

Total 

length 

(m) 

Body 

area 

index 

(BAI) 

No. roll 

events 

(N = 

1890) 

No. 

dives   

(N = 

1,856) 

A19 NA 9/1/19 

15:05:52 

9/1/19 

16:41:18 

Cape 

Flattery, 

WA 

01:29:17 10.2* NA 45 31 

B21a M 8/16/21 

13:01:11 

8/16/21 

18:20:03 

Lost Creek 03:00:34 12.0 22.74 137 78 

C21a NA 8/16/21 

16:04:52 

8/16/21 

16:31:24 

Alsea River 

Mouth 

00:26:15 11.1 25.37 3 3 

D21b M 8/16/21 

17:16:37 

8/16/21 

21:08:03 

Alsea River 

Mouth  

03:51:26 11.6 25.82 59 60 

E22 F 7/21/22 

9:50:30 

7/22/22 

10:38:49 

Nye Beach 24:48:19 11.1 24.94 324 477 

F22c F 7/21/22 

10:36:03 

7/21/22 

17:19:17 

Flat Rock 06:43:14 10.4 26.94 288 141 

G22 F 7/21/22 

16:03:25 

7/22/22 

09:37:27 

South 

Beach 

17:34:02 11.6 27.39 370 298 

H22 NA 9/12/22 

13:13:35 

9/12/22 

18:00:00 

Gull Rock 00:33:25 8.9 29.45 14 7 

I22 F 9/12/22 

12:49:02 

9/13/22 

11:54:58 

Gull Rock 23:05:58 10.5 28.46 478 627 

J22 F 9/12/22 

11:49:02 

9/12/22 

19:12:53 

Gull Rock 07:23:50 12.1 26.75 172 142 

*Total length from outside of 15 day window around tag deployment.  
aTag without audio data. 
bTag without video data. 
cIndividual is the known calf of G22.  

 

Results 

Deployment summary 

Nine CATS tags were successfully deployed on PCFG grey whales in 2021 (n = 3) and 

2022 (n = 6). With the additional 2019 CATS tag deployment from the coast of Washington (J. 

Calambokidis, unpublish. data), these 10 deployments totaled 91.35 hours, with a mean 

deployment time of 9.14 hours (range = 0.44 hours to 24.81 hours; Table 2.1). Tags were 

deployed on five females, two males, and three whales of unknown sex, including a mother 

(G22) and her 8-year-old daughter (F22) on the same day. 

The GPS data from the 2022 deployments was unable to be recovered. Deployment H22 

had an abrupt stop in biologging data collection after ~0.5 hours despite the tag remaining on the 

animal. Deployment I22 had abrupt stops in data collection leading to gaps in the sensor data. 

Only the data following these gaps were included in the analysis for this deployment.  
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2Figure 2.2. Hidden Markov Model (HMM) state-dependent distributions for all dives (n = 1,856) recorded 

on CATS tags deployed on PCFG grey whales based on (a) turn angle, (b) dive tortuosity, (c) dive duration, 

(d) and roll event presence. (e) Viterbi algorithm state assignments for one deployment’s pseudotrack.   

 

Based on the definitions of day and night, approximately 60.2 hours of sampling occurred 

during the day and 31.15 hours of sampling occurred at night. Four tags were considered to have 

behaviours performed at night—one deployment with a little over one hour of night sampling 

and three deployments with the full 10 hours of overnight sampling (Table 2.1). A total of 760 

dives and 540 roll events occurred at night for all full overnight deployments combined, 

compared to 634 dives and 634 roll events during the day for these same deployments. An 

additional 18 dives and 20 roll events occurred at night in the one deployment with about an hour 

of night sampling, compared to the 42 dives and 39 roll events during the day.  

Broad states 

HMMs were constructed using 1,856 dives from CATS tags deployed on 10 individual 

whales. Dives of PCFG grey whales were best classified into three distinct and biologically 
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2Table 2.2. State-dependent distribution parameters of the data streams estimated by the Hidden Markov 

Model (HMM) for the three states included in the deployments of CATS tags on PCFG grey whales (n = 1,856 

dives). 

Data stream Distribution State Distribution parameters 

Turn angle (radians) von Mises 1 μ = -0.003; κ = 90.87 

  2 μ = -0.088; κ = 1.91 

  3 μ = 0.116; κ = 0.78 

Dive duration (s) gamma 1 μ = 102.1; σ = 47.1 

  2 μ = 96.7; σ = 75.3 

  3 μ = 185.6; σ = 84.0 

Dive tortuosity beta  1 α = 1.03; β = 791.08 

  2 α = 0.63; β = 10.74 

  3 α = 1.05; β = 1.46 

Roll presence Bernoulli 1 p = 0.005 

  2 p = 0.550 

    3 p = 0.980 

 

relevant states. Adding a third state to the HMM reduced the spread of the state-dependent 

distributions and resulted in more normally distributed pseudo-residuals compared to a two-state 

model (see Appendix C for model comparison). A rest state was not detected by the model, 

indicating that no dives had the characteristics of resting whales. 

Dives classified under State 1 were characterized by turn angles close to 0o, tortuosity 

close to zero, no roll events present, and an intermediate dive duration (Figure 2.2). These 

features suggest that this dive type corresponds to non-foraging, transit behaviour, used by 

whales when moving in a directed fashion. 

State 2 dives had more variation in turn angle than State 1 dives, but less variation than 

State 3 (Figure 2.2a). Dive tortuosity for State 2 dives was concentrated around 0.1 and 

generally lower than 0.25, which was higher than State 1 dive tortuosity but included in the 

variation of tortuosity for State 3 dives (Figure 2.2b). Dives classified as State 2 had the shortest 

duration, albeit with high variation (Figure 2.2c), and were characterized by an intermediate 

probability of the presence of a roll event compared to the other two states (Figure 2.2d). The 

intermediate values for turn angle, dive tortuosity, and roll presence suggested that State 2 

corresponds to search behaviour.  

Dives classified as State 3 had the largest variation in turn angle, being the most likely to 

have turn angles greater than ± 90o (Figure 2.2a). State 3 also had the highest variation in dive  
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3Table 2.3. Transition probability matrix for the three states estimated by the Hidden Markov Model (HMM) 

based on dives (n = 1,856) recorded on CATS tag deployments on PCFG grey whales. Rows indicate the 

current state and columns indicate the proximate state.  

  State 1 State 2 State 3 

State 1 0.853 0.110 0.037 

State 2 0.070 0.795 0.135 

State 3 0.003 0.177 0.820 

 

tortuosity and was the state most likely to have dive tortuosity greater than 0.25 (Figure 2.2b). 

State 3 dives had the longest duration and the highest probability of roll presence (Figure 

2.2c,d). Given these features, State 3 dives were indicative of forage behaviour.  

The transition probability matrix of the final HMM indicated a high likelihood for a 

whale to remain in its current state (Table 2.3), which was especially true for the State 1 transit 

behaviour and the State 3 forage behaviour. The transition probability matrix supports State 2 

search behaviour as an intermediate state based on the high likelihood of transition to or from 

both State 1 and State 3. A whale in State 1 transit behaviour was more likely to transition to 

State 3 forage behaviour than vice versa. For a whale in the State 2 search behaviour, there was 

approximately equal probability of transitioning to State 1 transit behaviour or State 3 forage 

behaviour.  

Across all deployments (n = 1,856 dives), PCFG grey whales spent 43% of their dives 

searching, 36% of their dives foraging, and 21% of their dives transiting (Table 2.4). This 

pattern was consistent across most individual whales, except for E22, which spent the least 

proportion of dives searching (Table 2.4). Four individuals spent a noticeably higher proportion 

of time foraging (B21, C21, D21 and H22). The proportion of time spent in each state changed 

with time of day (Table 2.4). Across all deployments (n = 1,856 dives), the PCFG grey whales 

spent a higher proportion of time searching and a lower proportion of time foraging at night 

compared to the day. The proportion of transiting dives remained relatively constant between the 

day and night.  

All tagged whales spent approximately 20% of their time at the surface compared to 80% 

at depth (Table 2.5). This 20:80 ratio holds for all whales except for one deployment (F22) that 

spent 37% of time at the surface and 63% of time diving. The percentage of time spent at the 

surface increased to approximately 30% at night compared to 20% during that day (Table 2.5). 

This pattern was driven by one deployment (G22) that spent 44% of the time at the surface at  
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4Table 2.4. Percentage of dives from CATS tag deployments on PCFG grey whales estimated to correspond to each state defined by the Hidden Markov 

Model (HMM) during the full deployment and day (D) or night (N), for all deployments combined and each deployment. Day was considered to be 6am 

to 8pm PDT based on average sunrise and sunset times in the study region. Dashes indicate no available data for that deployment. The number of dives 

in each deployment is given in parentheses (n = ). 
Broad 

state 

All   

(n = 1,856) 

A19 (n= 

31) 

B21 (n= 

78) 

C21 (n= 3) D21 (n= 

60)* 

E22 (n= 

477) 

F22 (n= 

141) 

G22 (n= 

290) 

H22 (n= 7) I22 (n= 

627) 

J22 (n= 

142) 

Transit 0.21 0.10 0.18 0.00 0.00 0.35 0.04 0.06 0.00 0.28 0.04 

Search 0.43 0.55 0.18 0.00 0.22 0.21 0.42 0.52 0.14 0.59 0.49 

Forage 0.36 0.35 0.64 1.00 0.78 0.44 0.54 0.41 0.86 0.13 0.47 

Time of 

Day 

D 

(n = 

1078

) 

N  

(n = 

778) 

D  

(n = 

31) 

N 

(n = 

0) 

D  

(n = 

78) 

N 

(n = 

0) 

D 

(n = 

3) 

N 

(n = 

0) 

D  

(n = 

42) 

N 

(n = 

18) 

D 

(n = 

259) 

N 

(n = 

218) 

D 

(n = 

141) 

N 

(n = 

0) 

D 

(n = 

136) 

N 

(n = 

154) 

D 

(n = 

7) 

N 

(n = 

0) 

D 

(n = 

239) 

N 

(n = 

388) 

D 

(n = 

142) 

N 

(n = 

0) 

Transit 0.17 0.21 0.10 -- 0.18 -- 0.00 -- 0.00 0.00 0.30 0.37 0.04 -- 0.03 0.07 0.00 -- 0.33 0.27 0.04 -- 

Search 0.36 0.53 0.55 -- 0.18 -- 0.00 -- 0.31 0.00 0.19 0.21 0.42 -- 0.51 0.53 0.14 -- 0.39 0.63 0.49 -- 

Forage 0.47 0.26 0.35 -- 0.64 -- 1.00 -- 0.69 1.00 0.51 0.42 0.54 -- 0.47 0.40 0.86 -- 0.27 0.10 0.47 -- 

*Indicates deployment with only 1 hour of night sampling.  

 

5Table 2.5. Percentage of time spent at the surface compared to diving for CATS tag deployments on PCFG grey whales during the full deployment and 

day (D) or night (N), for all deployments combined and each deployment.  Dives were defined as periods where the depth was greater than 1 m for 

longer than 30 sec. Surface periods were defined as time spent at the surface between dives. Day was considered to be 6am to 8pm PST based on 

average sunrise and sunset times in the study region. Dashes indicate no available data for that deployment. The number of dives in each deployment is 

given in parentheses (n = ). 

 

*Indicates deployment with only 1 hour of night sampling.  

  All  

(n = 1,856) 

A19 (n= 

31) 

B21 (n= 

78) 

C21 (n= 3) D21 (n= 

60)* 

E22 (n= 

477) 

F22 (n= 

141) 

G22 (n= 

290) 

H22 (n= 7) I22 (n= 

627) 

J22 (n= 

142) 

Surface 0.23 0.22 0.13 0.20 0.23 0.16 0.18 0.37 0.10 0.24 0.23 

Depth 0.77 0.77 0.87 0.80 0.77 0.84 0.82 0.63 0.90 0.76 0.77 

Time of 

Day 

D 

(n = 

1078

) 

N  

(n = 

778) 

D  

(n = 

31) 

N 

(n = 

0) 

D  

(n = 

78) 

N 

(n = 

0) 

D 

(n = 

3) 

N 

(n = 

0) 

D  

(n = 

42) 

N 

(n = 

18) 

D 

(n = 

259) 

N 

(n = 

218) 

D 

(n = 

141) 

N 

(n = 

0) 

D 

(n = 

136) 

N 

(n = 

154) 

D 

(n = 

7) 

N 

(n = 

0) 

D 

(n = 

239) 

N 

(n = 

388) 

D 

(n = 

142) 

N 

(n = 

0) 

Surface 0.20 0.28 0.22 -- 0.13 -- 0.20 -- 0.23 0.22 0.17 0.16 0.18 -- 0.27 0.44 0.10 -- 0.22 0.27 0.23 -- 

Depth 0.80 0.72 0.78 -- 0.87 -- 0.80 -- 0.77 0.78 0.83 0.84 0.82 -- 0.73 0.56 0.90 -- 0.78 0.73 0.77 -- 
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3Figure 2.3. Classification and regression tree (CART) used to define foraging tactics for each roll event in 

CATS tag deployments on grey whales.  The CART model was constructed using training data that was 

randomly selected from a subset of visually validated roll events. N = 189 roll events were included in the 

training data set used to create the CART model. A more extreme negative median pitch indicates the 

individual is positioned more vertically in the water column with rostrum angled down in the sediment, while 

a median pitch closer to 0 indicates the individual is more horizontal. The top row of each box denotes the 

dominant foraging tactic conforming to the prior splitting rule of the decision tree. The second row denotes 

the proportion of data belonging to each headstand, benthic dig, and side swim foraging tactic, respectively. 

The last row denotes the percentage of the total data set represented in each box.  

 

night. Only one of the other full overnight deployments (I22) showed an increase in time spent at 

the surface at night.   

Foraging tactics   

The pruned tree was the best CART model to classify the training data set of visually 

validated roll event data into foraging tactics (Figure 2.3) as it was more parsimonious with the 

same accuracy as the unpruned tree. The pruned CART model was able to accurately predict 

84.8% of foraging tactics in the testing data. Bagging results showed a low out of bag error of 

0.1667 and a high accuracy of 89.1%, confirming the high accuracy of the CART model’s 

foraging tactic classification. Post-hoc validation of the foraging tactics in 10 randomly selected 

dive series using the TrackPlot method (see Appendix E for validation methods) confirmed  
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4Figure 2.4. Distribution of foraging tactics relative to the variables used in the classification and regression 

tree model.  The clear clusters in the median pitch and depth to body length ratio support the high 

importance of these variables in the classification tree.  

 

that ignoring the autocorrelation structure of the foraging tactics in the CART model did not 

contribute to accuracy errors. 

Median pitch was the most important variable in the CART model to correctly splitting 

the roll events into foraging tactics (64.7%), followed by the depth to body length ratio (19.3%), 

and finally by the absolute value of the median roll (10.1%). This variable importance is evident 

in Figure 2.4 that illustrates clear breaks between foraging tactics relative to median pitch and 

depth to body length ratio, while the absolute value of the median roll is similar among all 

foraging tactics (Table 2.6).  

Roll events with a median pitch more extreme than -27.9o were classified as headstands. 

Roll events with a median pitch between -27.9o and -9.5o and depth to body length ratio greater  
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6Table 2.6. Summary table of metrics included in the classification and regression (CART model) defining the different foraging tactics from CATS tag 

deployments on PCFG grey whales.  Values given as mean ± standard deviation. N is the number of roll events that correspond to each foraging tactic 

defined by the CART model.  

Foraging tactic Roll (degrees) Pitch (degrees) Depth to body length ratio 

Headstand (n = 661) 68.7 ± 30.1 -42.8 ± 11.6 0.9 ± 0.3 

Benthic dig (n = 582) 89.8 ± 27.2 -18.7 ±   5.4 1.1 ± 0.4 

Side swim (n = 647) 93.8 ± 29.7 3.6 ± 12.9 0.6 ± 0.6 

 

7Table 2.7. Percentage of roll events and mean sidedness from CATS tag deployments on PCFG grey whales spent in each foraging tactic defined by the 

classification and regression tree (CART) model during the whole deployment and day (D) or night (N), for all deployments combined and each 

individual whale.  Day was considered to be 6am to 8pm PDT based on average sunrise and sunset times in the study region. Sidedness values equal to 1 

indicate rolling to the right and values equal to 0 indicate rolling to the left. Intermediate values suggest a mixture of right and left rolls. Dashes indicate 

that the foraging tactic was not present in the deployment. The number of foraging tactics in each deployment is given in parentheses (n = ). 
Foraging 

tactic 

All  

(n= 1890) 

A19 (n= 

45) 

B21 (n= 

137) 

C21 (n= 3) D21 (n= 

59)* 

E22 (n= 

324) 

F22 (n= 

288) 

G22 (n= 

370) 

H22 (n= 

14) 

I22 (n= 

478) 

J22 (n= 

172) 

Headstand 0.31 0.64 0.34 1.00 0.44 0.72 0.13 0.21 0.00 0.16 0.32 

Benthic 

dig 

0.35 0.02 0.53 0.00 0.03 0.09 0.74 0.71 0.00 0.02 0.40 

Side swim 0.34 0.33 0.14 0.00 0.53 0.19 0.13 0.08 1.00 0.82 0.28 

Time of 

Day 

D 

(n = 

1330

) 

N 

(n = 

560) 

D 

(n = 

45) 

N 

(n = 

0) 

D 

(n = 

137) 

N 

(n = 

0) 

D 

(n = 

3) 

N 

(n = 

0) 

D 

(n = 

39) 

N 

(n = 

20) 

D 

(n = 

236) 

N 

(n = 

88) 

D 

(n = 

288) 

N 

(n = 

0) 

D 

(n = 

231) 

N 

(n = 

139) 

D 

(n = 

14) 

N 

(n = 

0) 

D 

(n = 

165) 

N 

(n = 

313) 

D 

(n = 

172) 

N 

(n = 

0) 

Headstand 0.31 0.14 0.02 -- 0.23 -- 1.00 -- 0.00 0.05 0.05 0.03 0.58 -- 0.63 0.49 0.00 -- 0.00 0.01 0.29 -- 

Benthic 

dig 

0.44 0.28 0.64 -- 0.59 -- 0.00 -- 0.21 0.95 0.78 0.73 0.28 -- 0.30 0.40 0.00 -- 0.36 0.06 0.41 -- 

Side swim 0.25 0.58 0.33 -- 0.18 -- 0.00 -- 0.79 0.00 0.17 0.24 0.13 -- 0.06 0.11 1.00 -- 0.64 0.93 0.30 -- 

Sidedness 
           

Headstand 0.93 1.00 1.00 1.00 0.00 0.86 0.92 0.95 -- 0.75 0.86 

Benthic 

dig 

0.97 1.00 1.00 -- 1.00 1.00 0.93 0.98 -- 0.95 0.90 

Side swim 0.51 0.93 0.88 -- 0.97 0.92 0.87 0.40 0.00 0.30 1.00 
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5Figure 2.5. Proportional activity budgets at the foraging tactic (a,b) and broad state (c,d) scales from CATS 

tag deployments on PCFG grey whales across total lengths (m; a,c) and body area index (BAI; b,d) of the 

whales. Each bar represents an individual deployment. N represents the number of roll events (a,b) and dives 

(c,d) performed during the deployment. Stars represent the known mother-daughter pair and the arrow 

represents the Washington deployment.  

 

than or equal to 0.55 were classified as benthic digs. Roll events with either median pitch less 

extreme than or equal to -9.5o, or with median pitch between -27.9o and -9.5o and depth to body 

length ratio less than 0.55 were classified as side swims.  

Across all deployments the foraging tactics were present in relatively equal proportions: 

31% headstands, 35% benthic digs, and 34% side swims. However, there is high individual 

variation between deployments (Table 2.7). Three whales (A19, C21, and E22) performed 

headstands as their main foraging tactic. Four whales (B21, F22, G22, and J22) performed 

benthic digs as their main foraging tactic. One whale (D21) had relatively equal proportions of 

headstands and side swims as their main foraging tactics. The proportional activity budgets  
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6Figure 2.6. Maximum depth (m; a,b) and sidedness (c,d) of foraging tactics from CATS tag deployments on 

PCFG grey whales defined using a classification and regression tree (CART) model during day and night for 

three full overnight deployments.  Numbers across the top indicate the number of roll events included in each 

boxplot. Day was considered to be 6am to 8pm PST based on average sunrise and sunset times in the study 

region. Sidedness values equal to 1 indicate rolling to the right and values equal to 0 indicate rolling to the 

left. Intermediate values suggest a mixture of right and left rolls. Panels a and c show the distribution of 

values for all three overnight deployments combined. Panels b and d show the distribution of each of the full 

overnight deployments, with the different colors representing unique deployments. The open square 

represents the mean value of all full overnight deployments (a,c). In all panels, the lines represent the median 

and dots denote outliers.  

 

varied with total length and BAI (Figure 2.5). The whales that favored headstands and benthic 

digs were longer than 11 m. Whales with headstands as the main foraging tactic had relatively 

low BAI (< ~25) while individuals with benthic digs as the main foraging tactic had a mix of 

high and low BAI (~23-27). Two whales (H22 and I22) had side swims as their main foraging 

tactic, and these whales were shorter than 11 m and had relatively high BAI (> 28).  

Diurnal patterns in foraging tactic use are evident. Across all deployments combined, the 

proportion of headstands and benthic digs decreased at night while the proportion of side swims 

increased (Table 2.7). Yet, foraging tactic use between day and night remained very  
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8Table 2.8. Mean sidedness and maximum depth (m) of foraging tactics defined by a classification and 

regression tree (CART) model during day and night for full overnight deployments of CATS tags on PCFG 

grey whales.  Day was considered to be 6am to 8pm PST based on average sunrise and sunset times in the 

study region. Sidedness values equal to 1 indicate rolling to the right and values equal to 0 indicate rolling to 

the left. Intermediate values suggest a mixture of right and left rolls. Dashes indicate that the foraging tactic 

was not present during that time of day for the deployment. Only whales with full overnight deployments 

were included. N represents the number of foraging tactics in the deployment for day and night, respectively.  

Tactic 

 Er220721-81 (n= 324) Er220721-83 (n= 370) Er220912-82 (n= 478) 

  

Day  

(n = 236) 
Night  

(n = 88) 
Day  

(n = 231) 
Night  

(n = 139) 
Day  

(n = 165) 
Night  

(n = 313) 

Headstand 
sidedness 0.82 1.00 0.98 0.88 -- 0.75 

depth 9.34 15.57 10.34 9.46 -- 6.24 

Benthic 

dig 

sidedness 1.00 1.00 0.97 0.98 0.97 0.89 

depth 12.40 10.36 11.47 9.88 18.66 11.45 

Side swim 
sidedness 0.98 0.81 0.27 0.53 0.61 0.19 

depth 14.99 8.19 11.26 11.30 10.53 3.18 

 

individualistic. Deployment D21 performed almost exclusively benthic digs during the night 

compared to mostly side swims during the day, while deployment I22 performed almost 

exclusively side swims at night compared to a 60:40 split of side swims and benthic digs during 

the day. Deployment E22 had little difference in foraging tactic use between the day and night, 

while deployment G22 shifted from a higher proportion of headstands during the day to a more 

equal proportion of headstands and benthic digs at night.  

Headstands and benthic digs predominantly occurred during right-sided rolls, while side 

swims had more variation in the sidedness of the roll event (Table 2.7). This pattern of right-

sided headstands and benthic digs and more left-sided side swims was consistent across 

individuals. The depth and lateralization of foraging tactics compared across the full overnight 

deployments (n = 1,172) indicates that grey whales tended to perform foraging tactics at 

shallower depths and roll more to the left at night (Figure 2.6). All overnight deployments 

showed a shallower depth of foraging tactic at night (mean depth = 9.51 m) than day (mean 

depth = 12.37 m), except for the headstands of deployment E22 (Table 2.8). The increase in left-

sided rolls was most prevalent in side swims, although deployment G22 had more right-sided 

side swims at night (Table 2.8).  

Discussion 

The biologging data we obtained from suction cup tag deployments on 10 PCFG grey 

whales successfully defined behaviours at both the broad state and foraging tactic scales, 
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providing the first quantitative descriptions of grey whale behavior movements. Most notably, 

the HMMs defined three reasonably unique broad states at the dive scale that likely correspond 

to forage, search, and transit behaviours. These states were best described using turn angle 

between dive start points, dive duration, dive tortuosity and the presence of roll events within the 

dive. All of the tagged whales spent proportionally more time in the forage and search states than 

they did in the transit state, with only two individuals spending more than 20% of their time 

transiting. On average, the PCFG grey whales spent ~20% of their time at the surface, and 80% 

diving—and spent more time at night searching, as well as slightly more time at the surface.  

CART models indicate that the foraging tactics of headstand, benthic dig, and side swim 

are best defined from accelerometry data using median pitch, the ratio of depth to body length, 

and the absolute value of the medial roll, with median pitch being the most important variable in 

the classification model. Across all whales, the proportion of foraging tactics used was 

approximately equal, but there was high individual variation in the preferred foraging tactic used. 

Foraging tactics occurred at shallower depths and included more left-sided rolls at night 

compared to during the day. This diurnal pattern of lateralization was most evident in side 

swims, which was the tactic most frequently used at night. However, high individual variation 

between foraging tactic proportion and lateralization were present in the biologging data.  

The detection of a search state in the biologging data lends credence to the separation of 

search and forage behaviours for PCFG grey whales that have been proposed based on 

differences in dive cycle characteristics from qualitative broad state definitions (Mallonee, 1991; 

Stelle et al., 2008). Searching has also been described as a time- and distance-intensive 

behaviour (Hildebrand et al., 2022; Sullivan and Torres, 2018) where the whale spends a high 

amount of time and  distance in an area. Thus, searching is a time when the whale expends 

energy with no energetic gains (Norberg, 1977) and is the basis of many foraging ecology 

theories attempting to describe how predators optimize their foraging behaviour in habitats of 

varying prey patch types and densities (Charnov, 1976; MacArthur and Pianka, 1966; Norberg, 

1977). Optimal foraging theory predicts that when less prey are present in the prey patch, 

foraging time will increase if these lower quality patches are visited by predators (MacArthur 

and Pianka, 1966). However, foraging within a prey patch decreases the prey density. Thus, to 

maintain an optimal feeding strategy, the marginal value theorem predicts that in habitats with 



29 

 

low prey availability, predators will spend more time in each prey patch foraging, and less time 

moving between prey patches searching (Charnov, 1976). Overall, these theories predict that in 

times of low prey availability, animals will spend more time foraging and less time searching for 

“a better prey patch”. Therefore, comparisons of time spent in the search state to the time in the 

forage state can be a proxy for prey availability based on theories of foraging ecology. 

Body position variables—median pitch, depth to body length ratio, and median roll—

were the most useful for quantitatively defining grey whale foraging tactics—a finding supported 

by their use in qualitative drone focal follows (Torres et al., 2018). Previous biologging studies 

on other baleen whale species used different accelerometry metrics to define foraging behaviour. 

These other metrics include swim speed and stroke rates for continuous ram filtration (Simon et 

al., 2009), and signals of high accelerometry and swim speed for lunges at depth (Cade et al., 

2016; Goldbogen et al., 2008; Izadi et al., 2022; Shadwick et al., 2019; Simon et al., 2012) or 

high horizontal accelerometry and high pitch for lunges at the surface (Owen et al., 2016). 

Bottom side roll behaviour of humpback whales foraging on benthic sand lance is most similar to 

benthic suction feeding behaviour of grey whales and was detected using high roll and slow 

swim speed in tag accelerometry data (Ware et al., 2014). The similarity of metrics used to 

define bottom side roll behaviour in humpback whales (Ware et al., 2014) with those used to 

define grey whale foraging tactics in this study supports the contention that body position 

variables are useful for defining foraging behaviour of baleen whales feeding on benthic prey. 

Our quantification of grey whale foraging tactics fills a knowledge gap in detection and 

quantitative description of foraging signals of eschrichtiids (grey whales), which can be 

combined with the thorough description of feeding methods by other baleen whales (Goldbogen 

et al., 2017) to provide quantified body movement descriptions for foraging tactics of all 

mysticete species groups. These newly established quantitative metrics to detect and define 

foraging in PCFG grey whales can enable  other analyses that require quantified foraging 

behaviour data to support management and conservation efforts. For example, a bioenergetic 

model for ENP and WNP grey whale populations has been developed to assess the population 

consequences of disturbance to individual whales (Villegas-Amtmann et al., 2017, 2015). By 

quantifying PCFG grey whale foraging tactics, this unique group of grey whales a similar 
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analysis can now be conducted to inform management decisions regarding multiple threats 

facing this sub-group.  

The proportional activity budgets we constructed from biologging data are similar to 

those previously constructed using other behavioural sampling techniques (i.e., theodolite focal 

follows (Sullivan and Torres, 2018), land-based observations (Mallonee, 1991; Stelle et al., 

2008), drone focal follows (Torres et al., 2018)). We found that PCFG grey whales spend 36% of 

their time foraging, 43% searching, and 21% transiting, which fall within the range of values 

reported for these broad states from other parts of the PCFG range (Mallonee, 1991; Stelle et al., 

2008; Sullivan and Torres, 2018). This study found that headstands, benthic digs, and side swims 

were present in approximately equal proportions, which differs from the only other study to 

assess foraging tactics that found headstands (including side digs) to be twice as common as side 

swims (Torres et al., 2018). This discrepancy highlights the benefits of the fine-scale data 

collected from biologging tags that allow a quantitative assessment of behavior. Patterns in 

individual variation of tactics also indicate that side swims are a less commonly used foraging 

tactic. Only two whales (H22 & I22) had side swim as the dominant foraging tactic, and these 

individuals were shorter than 11 m indicating that they likely had not reached maturity (Bierlich 

et al., 2023). This finding is consistent with the ontogenetic shift noted in PCFG grey whales that 

transition from side swims to headstands with increasing total length that is a proxy for age and 

maturity (Bird et al., in prep).  

Biologging data can be used to explore the complex relationships between behaviour and 

body condition (Amo et al., 2007; Beale and Monaghan, 2004; Ransom et al., 2010). With our 

limited sample size, we documented that all grey whales with a BAI below average ( i.e., <26.89; 

K. Bierlich pers. comm.)  consistently made more foraging dives than search or transit. This 

pattern of skinnier whales spending more time foraging is somewhat similar to horses who 

forage more when in poorer body condition spent more time foraging than individuals in better 

body condition (Ransom et al., 2010). Body condition may also play a role in how animals 

respond behaviourally to disturbances, as shown for seabirds that react more readily to 

disturbances when they are in good body condition and can afford the added energetic cost of 

moving away (Beale and Monaghan, 2004). Given the intensity of vessel disturbance in the 

nearshore foraging range of the PCFG grey whales (COSEWIC, 2017; Duffus, 1996; Lemos et 
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al., 2022; Sullivan and Torres, 2018), disturbance impacts may reduce time spent foraging and 

thereby body condition, which in turn could impact the whales’ ability to respond to the 

disturbance. Biologging data can play an integral role in disentangling these relationships 

between behaviour, body condition, and disturbance in future studies. 

A surprising finding in the activity budgets was that the tag deployments on the whales 

that were a known mother (G22) and her daughter (F22) had very similar proportions of both 

broad states and foraging tactics (Figure 2.5). This suggests that there may be potential for 

vertical transmission of behaviours in PCFG grey whales, a group that shows high maternal 

recruitment (Calambokidis and Perez, 2017). Vertical transmission of foraging tactics and tool 

use have been documented in bottlenose dolphins (Tursiops aduncus) from mothers to primarily 

female offspring (Wild et al., 2019) and the importance of female-kinship for shared prey 

preferences has been demonstrated in humpback whales (Rendell et al., 2019). While there is 

limited data documenting maternal kinship in baleen whales (Rendell et al., 2019), and only two 

of our study animals had a known maternal relationship, this finding demonstrates how our study 

system of PCFG whales with strong site-fidelity and maternal recruitment presents a viable 

opportunity for future research to examine if vertical transmission of foraging tactics occurs in 

baleen whales.  

The lack of social behaviour detected by the HMM is likely explained by the low 

probability of the tags being deployed long enough to capture social behaviours given the rarity 

of social interactions observed in the PCFG range (Stelle et al., 2008; Torres et al., 2018). The 

low number of social behaviours noted in PCFG grey whales increases in frequency in the early 

fall (late August, early September) towards the end of the foraging season (Stelle et al., 2008; 

Torres et al., 2018). About 31 hours to tag data was collected in early September, yet these 

deployments potentially occurred too early in the fall to have a high likelihood of recording data 

during social interactions.  

The observed differences between day and night foraging behaviours suggest that the 

PCFG grey whales are visual predators (Torres, 2017) targeting zooplankton prey (likely mysids) 

that have a vertical expansion of their depth range at night (Alldredge and King, 1980; 

Mauchline, 1980). More dispersed prey and inability to rely on visual cues at night potentially 

require foraging PCFG grey whales to use more exploratory behaviour to detect prey in the dark, 



32 

 

leading to a higher proportion of the search state and side swims at night as this foraging tactic is 

performed in the mid-water column (Bird et al., in prep; Torres et al., 2018).  

Decreased foraging depth and higher number of rolls to the left (right-eye up) during 

nighttime could also potentially result from an increased vertical distribution of prey and indicate 

that whales may track prey above them (Jaakkola et al., 2021). The overnight deployment with 

the most extreme change in depth and sidedness occurred when the moon was 97.58% 

illuminated (https://nineplanets.org/moon/phase/9-12-2022/), supporting the idea that with high 

moonlight, the whale was looking for the shadow of prey above them. The two other overnight 

deployments were when the moon was only 44.36% illuminated 

(https://nineplanets.org/moon/phase/7-21-2022/) and thus the decreased moonlight might explain 

why there were fewer notable changes in sidedness of foraging tactics between day and night. 

PCFG grey whales were also found to slightly increase their surface time at night, from a 

20:80 ratio during the day to a 30:70 ratio at night. This increase in surface time potentially 

indicates that whales spend more time resting at the surface during the night. This is further 

supported by the lack of resting dives detected by the HMM, suggesting that rest behavior may 

happen at the surface. Therefore, future work should focus on examining where and when PCFG 

grey whales rest.  

Limitations and recommendations 

Tagging studies are inherently limited by sample size and individual variation when 

generalizing to the larger population (Hays et al., 2016). However, this study illustrates the 

feasibility of using biologging data to define behavior states and foraging tactics of PCFG grey 

whales along the Oregon and Washington coast.  Collection of a larger sample size of biologging 

data from PCFG whales would account for individual variability in behavioural classifications. 

Therefore, effort should be made to collect biologging data from grey whales throughout the 

PCFG foraging range, as well as the from the WNP and ENP populations foraging in the Arctic. 

Additionally, the whales we tagged were predominantly female (by chance) so other 

demographic units should be targeted in future tagging efforts to ensure that any behavioural 

differences in age and sex are captured in the biologging data.  

Additionally, prey data should be integrated with the behavioural biologging data to 

develop metrics of foraging success. This approach would allow for an estimate of energetic gain 

https://nineplanets.org/moon/phase/9-12-2022/
https://nineplanets.org/moon/phase/7-21-2022/
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for each foraging tactic so that foraging efficiency can be calculated, and insight can be gained 

on which foraging strategies are the most successful (e.g., Savoca et al., 2021; Volpov et al., 

2015; Ydesen et al., 2014). Estimates of prey consumption per foraging tactic have not been 

examined in grey whales, but can be obtained once prey densities have been determined and are 

combined with foraging energetics data (see Chapter 3) and measurements of prey quality 

(Hildebrand et al., 2021).  

Conclusions  

The 10 biologging tags deployed provide the first quantitative definitions of foraging 

behaviours of PCFG grey whales. These quantitative definitions of foraging behaviours provide 

a means to estimate foraging efficiency and analyze the drivers of foraging behaviour. 

Understanding the energetic costs of these behaviours will contribute to a better understanding of 

effects of disturbance and exposure to physiological threats such as boat strikes and pollution. 

Quantifiable definitions of foraging behaviour can also contribute to anticipating and diagnosing 

the causes of Unusual Mortality Events.  
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Chapter 3: Biologging-derived proxies estimate the relative energetic costs of 

grey whale foraging behaviours 

Summary 

Relatively little is known about the fine-scale energetic costs that grey whales incur to forage, 

travel and search for prey—or the consequences that disturbances have on their food 

requirements. One means to obtain measures of energetic cost is to calculate proxies of energy 

expenditure from movement variables recorded by sensors (accelerometers, magnetometers, and 

gyroscopes) mounted in biologging tags temporarily deployed on whales. In this study we 

attached suction-cupped biologging tags to 10 Pacific Coast Feeding Group (PCFG) grey whales, 

and calculated four proxies of energy expenditure—Overall Dynamic Body Acceleration 

(ODBA; ms-2), stroke rate (Hz), stroke amplitude (radians per s), and duration of dives. Among 

the broad behavior states (i.e., forage, search, transit) and foraging tactics used by grey whales 

(i.e., headstands, benthic digs, and side swims), we found that foraging was more energetically 

costly than searching and transiting—and that headstanding was a more energetically expensive 

foraging tactic than benthic digs and side swims (based on stroke rates). We conclude that stroke 

rate is the best proxy to estimate energy expenditure for grey whales because it is the easiest to 

calculate, is the most comparable across tag deployments and studies, and has fewer limitations 

compared to the other proxies. These relative measures of energy expenditure calculated for 

different foraging behaviours represent an important foundational step toward better 

understanding grey whale foraging energetics, enabling assessment of prey requirements and 

energetic impacts of threats facing this species. 

Introduction 

A small group of grey whales (Eschrichtius robustus) known as the Pacific Coast 

Feeding Group (PCFG; ~210 individuals, Harris et al., 2022) forage over multiple years between 

Norther California and British Columbia (41oN and 52oN) from 1 June to 30 Nov (International 

Whaling Commission, 2011)  rather than continue their migration north to Arctic foraging 

grounds with the larger Eastern North Pacific (ENP) grey whale population (~17,000 

individuals; Eguchi et al., 2022). Additionally, PCFG grey whales use numerous foraging tactics, 

such as headstands and side swims (Torres et al., 2018) to forage on a variety of prey (Darling et 
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al., 1998; Hildebrand et al., 2021) in a mosaic of kelp and reef habitat (Torres et al., 2018) while 

ENP whales are thought to perform a traditional benthic dig to suction feed on benthic 

amphipods in soft-bottomed habitats (Johnson and Nelson, 1984; Moore et al., 2022; Nerini, 

1984; Wursig et al., 1986). This small PCFG sub-group faces a number of unique threats 

associated with entanglement, boating disturbance, ship strikes, mircoplastic ingestion, and 

altered benthic productivity (COSEWIC, 2017; Duffus, 1996; Lemos et al., 2020a, 2020b; 

Scordino et al., 2020; Silber et al., 2021; Sullivan and Torres, 2018; Torres et al., 2023). The 

consequences of these threats likely include negative impacts on the foraging energetics of 

PCFG grey whales, and ultimately their health, survival, and birth rates. Unfortunately, relatively 

little is known about the fine-scale energetic costs of foraging and other behaviours of grey 

whales.  

Annual food requirements have been calculated for grey whales using bioenergetics 

models that estimate the energetic costs of travelling (migration), breeding, and foraging as a 

function of average observed respiration rates (Agbayani, 2022; Villegas-Amtmann et al., 2017, 

2015). These models provide useful estimates of prey requirements on broad spatial and 

temporal scales, but fail to provide insight into the energetic consequences of threats facing 

individual grey whales on finer spatial and temporal scales. Assessing fine scale energetic 

requirements of foraging needed by grey whales to support survival, growth, and reproduction, 

requires knowing the energetic costs associated with both broad states and foraging tactics.  

Biologging tags that record high-resolution accelerometry data provide a minimally 

invasive means to measure energy expenditure of free-ranging animals (Watanabe and 

Goldbogen, 2021) with important conservation implications. Common metrics used to estimate 

energy expenditure of behaviors from biologging data in marine megafauna include overall 

dynamic body acceleration (ODBA), stroke rate, stroke amplitude and dive duration. ODBA is 

the sum of the specific acceleration in all three axes integrated over time and often used as a 

proxy for energetic expenditure (Brown et al., 2013; Gleiss et al., 2011; Halsey, 2017, 2011; 

Wilson et al., 2020). ODBA measures the acceleration of the body and is considered an effective 

way of determining energy expenditure when an animal’s metabolic rate is majorly comprised of 

movement costs. ODBA has been linked to metabolic rate in many studies (Allen et al., 2022; 

Fahlman et al., 2013; Halsey et al., 2009; Jeanniard-du-Dot et al., 2017; John, 2020; Wilson et 
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al., 2006). Stroke rate, or the frequency of stroking, has been linked to metabolic rate in 

pinnipeds and cetaceans (Allen et al., 2022; Isojunno et al., 2018; Jeanniard-Du-Dot et al., 2016; 

Maresh et al., 2015; Martín López et al., 2015; Williams and Maresh, 2015), although the 

cetacean studies are primarily focused on odontocetes. Stroke amplitude is derived as a rotation 

rate from biologging data (Cade et al., 2020) and is often associated with indicating swimming 

intensity (Cade et al., 2020; Jeanniard-Du-Dot et al., 2016; Williams et al., 2015). The duration 

of dives can also be used as a proxy of energetic cost at the sub-dive behavioural scale 

(Jeanniard-Du-Dot et al., 2016; Ladds et al., 2017; Williams et al., 2004, 2017). It is assumed 

that animals will spend less time performing more energetically costly behaviors, thus potentially 

resulting in shorter dives based on the energetics of the behavior observed. These accelerometry-

derived proxies of energy expenditure have aided conservation efforts for marine mammals by 

estimating entanglement costs (van der Hoop et al., 2017) and increasing precision of prey 

requirements from bioenergetic models (Brodie et al., 2016).  

We deployed suction cup high-resolution accelerometry biologging tags on PCFG grey 

whales in their foraging grounds off the coast of Oregon, USA to calculate proxies of energy 

expenditure associated with broad behavior states (e.g., forage, search, transit) and specific 

foraging tactics (e.g., headstand, benthic dig, side swim) identified in prior analyses (Chapter 2). 

For each broad and fine scale behavior we calculate four metrics of energy expenditure (ODBA, 

stroke rate and amplitude, and dive duration) and compare results to determine the relative 

energetic costs of different behaviors and which metrics are the most consistent and useful for 

describing grey whale energetics. These biologging derived estimates of relative grey whale 

energy expenditure may have high utility in conservation contexts for a species facing regular 

disturbance from multiple threats and poses logistical challenges to measure metabolic rates 

through other methods.   

Methods 

Data collection 

We deployed CATS (Custom Animal Tracking Solution, https://cats.is) video and inertial 

measurement unit (IMU) tags on ten PCFG grey whales, one in 2019, three in 2021 and six in 

2022. All fieldwork was conducted under NOAA/NMFS permit #21678 and the University of 

British Columbia Animal Care Committee permit #A21-0254. Tagged animals were identified  
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9Table 3.1. Biologging CATS tag deployments on PCFG grey whales. 

Deployment ID Genetic 

Sex 

Tag on Tag off 

 

 

 

Tag on 

location 

Deployment 

length 

(hh:mm:ss) 

Total 

length 

(m) 

Body 

area 

index 

(BAI) 

A19 NA 9/1/19 

15:05:52 

9/1/19 

16:41:18 

Cape Flattery, 

WA 

01:29:17 10.2 NA 

B21a M 8/16/21 

13:01:11 

8/16/21 

18:20:03 

Lost Creek 03:00:34 12.0 22.74 

C21a NA 8/16/21 

16:04:52 

8/16/21 

16:31:24 

Alsea River 

Mouth 

00:26:15 11.1 25.37 

D21b M 8/16/21 

17:16:37 

8/16/21 

21:08:03 

Alsea River 

Mouth  

03:51:26 11.6 25.82 

E22 F 7/21/22 

9:50:30 

7/22/22 

10:38:49 

Nye Beach 24:48:19 11.1 24.94 

F22c F 7/21/22 

10:36:03 

7/21/22 

17:19:17 

Flat Rock 06:43:14 10.4 26.94 

G22 F 7/21/22 

16:03:25 

7/22/22 

09:37:27 

South Beach 17:34:02 11.6 27.39 

H22 NA 9/12/22 

13:13:35 

9/12/22 

18:00:00 

Gull Rock 00:33:25 8.9 29.45 

I22 F 9/12/22 

12:49:02 

9/13/22 

11:54:58 

Gull Rock 23:05:58 10.5 28.46 

J22 F 9/12/22 

11:49:02 

9/12/22 

19:12:53 

Gull Rock 07:23:50 12.1 26.75 

aTag without audio data. 
bTag without video data. 
cIndividual is the known calf of G22.  

 

using photo identification, and genetic sex information was obtained for known individuals using 

previously collected tissue samples (Lang et al., 2014). Drone photogrammetry was used to 

calculate total length (m) and body area index (BAI) measurements of tagged animals from 

flights within 15 days of the deployment. Data from the CATS tags (400 Hz accelerometer, 50 

Hz magnetometer and gyroscope sensors, and 10 Hz pressure sensors) were pre-processed 

according to the methods of Cade et al. (2021) — and dives and roll events were manually 

audited using the catsr package (Czapanskiy, 2022) in R v4.2.3 (R Core Team, 2023) and then 

classified into behaviours. Dives were defined into three broad states (forage, search, and transit) 

according to the Hidden Markov Model (Chapter 2). Roll events were assigned to foraging 

tactics (headstand, benthic dig, and side swim) according to the Classification and Regression 

Tree model described in Chapter 2. Deployment summary information can be found in Table 

3.1. 
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Calculating energy expenditure proxies 

All energy expenditure proxies were calculated from biologging data in R v4.2.3 (R Core 

Team, 2023) unless otherwise stated.  

0.1.1.1 Overall Dynamic Body Acceleration (ODBA) 

To remove the influence of gravity on the calculation of ODBA, accelerometer data were 

filtered at 25%, 50% and 70% of the dominant stroking frequency (dsf) for each deployment 

(Table G1). Different filter frequencies were calculated to test if choice of filter affected results. 

Dsf was calculated using the dsf function in the tagtools package (DeRuiter et al., 2022) on a 

dive series of the acceleration data where the whale was observed to be steady swimming. 

Complementary filtering of the full deployment was conducted using the comp_filt function in 

the tagtools package (DeRuiter et al., 2022). 

ODBA was calculated from the high frequency acceleration data of the full deployment 

using the odba function in the tagtools package (DeRuiter et al., 2022). ODBA values within 0.2 

m of the surface were replaced with NAs, as noise in the acceleration data from the tag breaking 

the surface confounds the true body movement signal (D. Cade pers. comm.). Then the mean 

ODBA for each dive and roll event was calculated. As ODBA depends on tag placement and 

animal size (Martin Lopez et al., 2022), ODBA values were standardized according to the 

following equation (Isojunno and Miller, 2015): 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑂𝐷𝐵𝐴 =  
𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 𝑂𝐷𝐵𝐴

𝑀𝑒𝑑𝑖𝑎𝑛 𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑂𝐷𝐵𝐴
× 𝑀𝑒𝑑𝑖𝑎𝑛 𝑂𝐷𝐵𝐴 𝑎𝑙𝑙 𝑑𝑒𝑝𝑙𝑦𝑚𝑒𝑛𝑡𝑠 

where all ODBA values are in ms-2 and median deployment ODBA values are reported in Table 

G2. 

0.1.1.2 Stroke rate and amplitude 

To calculate stroke rate, strokes were detected in the PCFG biologging data using a 

custom stroke finding algorithm in MATLAB (MathWorks, v2021a) as applied in Cade et al. 

(2020), based on stroke_rate and dsf scripts at animaltags.org and Martín López et al. (2015). 

The stroke detection code was applied to the y-axis of the gyroscope because this represents the 

axis where the up-down oscillatory swimming signal is observed. A 1-second low pass filter was 

chosen to separate the body and fluke rotations in the gyroscope signal. A deployment-specific 
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stroking threshold due to variable tag placement was chosen to exclude residual rotations after 

the whale had stopped fluking and to clearly define up- and down-strokes.  

The stroke rate of each dive and roll event was calculated as the number of upstrokes that 

occurred during the behaviour divided by the duration of the behaviour. There is a known 

negative relationship between stroke rate and body length (Gough et al., 2021; Sato et al., 2007). 

Therefore, stroke rates were standardized according to the following equation: 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑠𝑡𝑟𝑜𝑘𝑒 𝑟𝑎𝑡𝑒 =  
𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 𝑠𝑡𝑟𝑜𝑘𝑒 𝑟𝑎𝑡𝑒

𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑑𝑠𝑓
× 𝑀𝑒𝑑𝑖𝑎𝑛 𝑑𝑠𝑓 𝑎𝑙𝑙 𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑠  

where all stroke rates are in Hz and the dsf for each deployment is reported in Table G1. 

In this study, stroke amplitude represents the speed of fluking (radians per s), or the rate 

of rotation in the y-axis of the gyroscope. Stroke amplitude was calculated as the maximum of 

the absolute values of the y-axis gyroscope data between each upstroke detected using the 

custom stroke finding algorithm described above. Stroke amplitude for each dive and roll event 

was calculated as the mean stroke amplitude that occurred during the behaviour. Stroke 

amplitude is dependent on tag placement and no standardization methods exist. Therefore, raw 

stroke amplitude values cannot be compared between deployments. 

0.1.1.3 Dive duration 

For each dive, the proportion of time spent performing each foraging tactic was 

calculated. If multiple foraging tactics were performed during a dive the dominant foraging tactic 

was chosen as the one that was performed for at least 50% of the dive time. Exploratory data 

analysis indicated that about 20% of the dives (199 out of 1,093) had multiple tactics performed 

during a single dive. Dive duration was calculated as the amount of time between the dive start 

(the point where the whale leaves the surface) and dive end (the point where the whale returns to 

the surface) following dive identification methods in Chapter 2. 

Statistical analysis  

All statistical analyses were conducted in R v4.2.3 (R Core Team, 2023). Significance 

levels for all tests were set to α = 0.05. 

Proxies of energy expenditure (i.e., dive duration, ODBA, and stroke rate) were 

compared between both broad states and foraging tactics using mixed effects models, with 

deployment as a random effect to account for the repeated measures on individuals. The models 

were fitted using the lmerTest package (Kuznetsova et al., 2017). Nested models with and 
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without fixed effects were compared using likelihood ratio tests to select whether the inclusion of 

the fixed factor for behaviour improved the null model with no fixed effects.  

Linear mixed effects models were used to test for differences in dive duration and ODBA 

among different broad states and foraging tactics. Dive duration and ODBA were log-

transformed to meet model assumptions of normally distributed errors and homogeneity of 

variance. The analysis for stroke rate was split into two models given the zero-inflation in the 

distribution of raw stroke rate values. This zero-inflation emerges from the raw stroke rate values 

capturing two components of stroking energy expenditure: 1) the likelihood of gliding within a 

behaviour, indicated by stroke rates of zero and 2) the stroke rate of a behaviour, when stroke 

rate was greater than zero. Therefore, a binary glide variable was created, where a value of 0 

indicated stroking (stroke rate > 0) and a value of 1 indicated gliding (stroke rate = 0) to capture 

the non-fluking behaviour in the raw stroke rate data. The difference in probability of gliding 

between behaviours was assessed using a binomial generalized linear mixed model. For 

behaviours with a stroke rate greater than zero, linear mixed effects models were used to test for 

differences in stroke rate between different behaviours at the scale of broad state and foraging 

tactic. Stroke rate was log-transformed to meet model assumptions of normally distributed errors 

and homogeneity of variance.  

Pairwise comparisons of the mean dive duration, ODBA, and non-zero stroke rate 

between behaviours were carried out using the estimated marginal means with the Tukey method 

for p-value adjustment when comparing a family of estimates using the emmeans package 

(Lenth, 2022). The differences in glide probability between behaviours were visualized by 

plotting the estimated effect of the behaviour factor using the effects package (Fox, 2003; Fox 

and Weisberg, 2019).  

Differences in stroke amplitude between behaviours within each deployment were 

compared visually by plotting the data. General summaries of the number of deployments with 

the same patterns of stroke amplitude between behaviours were used to determine which 

behaviour had the highest stroke amplitude by majority rule. Only deployments with more than 

one behaviour were used in the summaries (n = 9 at broad state scale; n = 8 at foraging tactic 

scale). Stroke amplitude was reported as percent differences because raw values were not 

comparable across deployments. Broad state stroke amplitude was calculated as 
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
(𝑚𝑒𝑎𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠𝑡𝑟𝑜𝑘𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 − 𝑚𝑒𝑎𝑛 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑠𝑡𝑟𝑜𝑘𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒)

𝑚𝑒𝑎𝑛 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑠𝑡𝑟𝑜𝑘𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
 

for n = 7 deployments except D21 and H22, where search stroke amplitude replaced transit 

stroke amplitude in the formula as these deployments did not have any transit data. Foraging 

tactic stroke amplitude was calculated as  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
(𝑚𝑒𝑎𝑛 𝑡𝑎𝑐𝑡𝑖𝑐 𝑠𝑡𝑟𝑜𝑘𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 −  𝑚𝑒𝑎𝑛 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑠𝑡𝑟𝑜𝑘𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒)

𝑚𝑒𝑎𝑛 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑠𝑡𝑟𝑜𝑘𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
 

for n = 6 deployments except D21 and H22, where search stroke amplitude replaced transit 

stroke amplitude in the formula as these deployments did not have any transit data. The transit 

stroke amplitude was chosen as the baseline to compare to as this behaviour represents 

directional steady swimming (see Chapter 2). All stroke amplitudes included in the percent 

difference formulae were in radians per second.  

Results 

Broad states 

The likelihood ratio test comparison of the nested models indicated that the models 

including broad state performed significantly better than the models without the fixed factor for 

all energy expenditure proxy models (Table 3.2).  

The ODBA models and pairwise comparisons of the means for each broad behavior state 

showed that, for all filters, ODBA was significantly different between states (Table 3.3). ODBA 

was highest for the forage state using the 25% and 70% dsf filters, while ODBA was highest for 

the search state using the 50% dsf filter (Table 3.4; Figure 3.1a-c). ODBA was lowest for the 

transit state for all filters. The forage state ODBA was approximately 1.7-2.6 times that of the 

transit state (Table 3.4). The search state had the highest variation in ODBA, while the transit 

state had the lowest  variation in ODBA (Table 3.4). This pattern in variation is also visible in 

Figure 3.1.  

Exploration of the difference in ODBA between broad states across individual 

deployments suggested differences between individuals dependent on the filter used to calculate 

ODBA (Figure 3.1d-f). Apparent deviations of individual deployments from model results for 

all data combined suggest that selection of the filter used to calculate ODBA is critical when 

interpreting results.  
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10Table 3.2. Results from comparison of linear mixed effects models constructed using the dives (n = 1,856) 

and roll events (n = 1,890) from CATS tag deployments on ten PCFG grey whales for different energy 

expenditure proxies, with and without broad state or foraging tactic as fixed effect, and with deployment 

included as a random effect.  A significance level of 0.05 was used in analysis. Bolded models had higher 

performance. All non-binary variables were log-transformed to meet model assumptions. ODBA represents 

the Overall Dynamic Body Acceleration (ms-2) calculated using three different filters 25% of the dominant 

stroke frequency (dsf; odba0.25), 50% dsf (odba0.5), and 70% dsf (odba0.7). ODBA was standardized to 

allow for comparison across deployments (Isojunno and Miller, 2015). Glide is the probability of gliding (i.e., 

having a stroke rate = 0) and stroke rate (Hz) represents all stroke rate values in the data greater than 0. 

Stroke rate was standardized by dsf to account for the negative relationship between stroke rate and body 

size (Gough et al., 2021; Sato et al., 2007). Dive duration was only considered at the foraging tactic scale and is 

the length of the dive in seconds of dives dominated by each foraging tactic.  

Behavioural scale Energy expenditure proxy Model Log Likelihood  Chi Sq Df P-value 

Broad state 

(n = 1,856 dives) 

odba0.25 ~1 -1919.8 
   

~state -1497.7 844.22 2 < 2.2E-16 

odba0.5 ~1 -1740.4 
   

~state -1459.2 562.28 2 < 2.2E-16 

odba0.7 ~1 -1556.2 
   

~state -1341.8 428.73 2 < 2.2E-16 

glide ~1 -80.5 
   

~state -70.9 19.13 2 7.03E-05 

stroke rate ~1 -1639.4 
   

~state -1508.3 262.22 2 < 2.2E-16 

Foraging tactic  

(n = 1,890 roll 

events) 

odba0.25 ~1 -1503.1    

 ~tactic -1453.4 99.573 2 <2.2e-16 

odba0.5 ~1 -1338.6    

 ~tactic -1295.5 86.115 2 <2.2e-16 

odba0.7 ~1 -1194.0    

 ~tactic -1172.5 43.092 2 4.39E-10 

glide ~1 -708.3    

 ~tactic -693.0 30.716 2 2.14E-07 

stroke rate ~1 -1135.5    

 ~tactic -1129.0 12.965 2 0.00153 

dive duration ~1 -1221.3    

 ~tactic -1155.5 131.73 2 <2.2e-16 

 

The probability of gliding did not differ between broad behavioral states according to 

glide model results (Figure 3.2a). However, stroke rate was significantly different between 

broad states according to the model (Table 3.3). Pairwise comparisons of mean stroke rates 

indicate that significant differences in stroke rate were present between the forage state and the 

search and transit states (Table 3.4), with significantly higher stroke rates while in the forage  

state (Figure 3.2b). The observed differences among individual stroke rates were greatest in the 

forage state (Table 3.4; Figure 3.2b,c). Stroke rates were  more consistent across individuals in 

the transit state (Table 3.4; Figure 3.2b,c).  
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11Table 3.3. Results from energy expenditure proxy linear mixed effects models constructed using the dives 

(n = 1,856) and roll events (n = 1,890) from CATS tag deployments on ten PCFG grey whales with broad state 

or foraging tactic as fixed effect and deployment included as a random effect and pairwise comparisons of the 

means. A significance level of 0.05 was used in analysis. All variables were log-transformed to meet model 

assumptions. ODBA represents the Overall Dynamic Body Acceleration (ms-2) calculated using three 

different filters 25% of the dominant stroke frequency (dsf; odba0.25), 50% dsf (odba0.5), and 70% dsf 

(odba0.7). ODBA was standardized to allow for comparison across deployments (Isojunno and Miller, 2015). 

Stroke rate (Hz) represents all stroke rate values in the data greater than 0. Stroke rate was standardized by 

dsf to account for the negative relationship between stroke rate and body size (Gough et al., 2021; Sato et al., 

2007). Dive duration was considered only at the foraging tactic scale and is the length of the dive in seconds of 

dives dominated by each foraging tactic.  

Broad state 

(n = 1,856 

dives) 

odba0.25 ~ state + 

(1|DeploymentID)  

ANOVA F-statistic df p-value  
538.47 2 <2.2e-16 

Comparison t.ratio df p-value 

forage - search 7.622 1843 <0.0001 

forage - transit 31.726 1842 <0.0001 

search - transit 26.661 1840 <0.0001 

odba0.5 ~ state + 

(1|DeploymentID) 

ANOVA F-statistic df p-value  
330.64 2 <2.2e-16 

Comparison t.ratio df p-value 

forage - search 4.807 1843 <0.0001 

forage - transit 24.532 1843 <0.0001 

search - transit 21.561 1840 <0.0001 

odba0.7 ~ state + 

(1|DeploymentID) 

ANOVA F-statistic df p-value  
243.1 2 <2.2e-16 

Comparison t.ratio df p-value 

forage - search 5.018 1843 <0.0001 

forage - transit 21.287 1843 <0.0001 

search - transit 17.97 1841 <0.0001 

stroke rate ~ state + 

(1|DeploymentID) 

ANOVA F-statistic df p-value  
140.81 2 <2.2e-16 

Comparison t.ratio df p-value 

forage - search 15.204 1821 <0.0001 

forage - transit 13.435 1820 <0.0001 

search - transit 0.802 1819 0.7021 

Foraging tactic  

(n = 1,890 roll 

events) 

odba0.25 ~ tactic + 

(1|DeploymentID) 

ANOVA F-statistic df p-value 

  51.066 2 <2.2e-16 

 Comparison t.ratio df p-value 

 headstand - benthic dig 0.041 1884 0.9991 

 headstand - side swim -7.844 1886 <0.0001 

 benthic dig - side swim -9.737 1885 <0.0001 

odba0.5 ~ tactic + 

(1|DeploymentID) 

ANOVA F-statistic df p-value 

  43.997 2 < 2.2e-16 

 Comparison t.ratio df p-value 

 headstand - benthic dig -0.995 1885 0.5803 

 headstand - side swim -7.886 1886 <0.0001 

 benthic dig - side swim -8.708 1885 <0.0001 
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odba0.7 ~ tactic + 

(1|DeploymentID) 

ANOVA F-statistic df p-value 

  21.755 2 4.56E-10 

 Comparison t.ratio df p-value 

 headstand - benthic dig -2.234 1885 0.0659 

 headstand - side swim -6.230 1885 <0.0001 

 benthic dig - side swim -5.367 1886 <0.0001 

stroke rate ~ tactic + 

(1|DeploymentID) 

ANOVA F-statistic df p-value 

  6.4718 2 0.001586 

 Comparison t.ratio df p-value 

 headstand - benthic dig 3.556 1634 0.0011 

 headstand - side swim 2.696 1636 0.0194 

 benthic dig - side swim -0.305 1633 0.9500 

dive duration ~ tactic + 

(1|DeploymentID) 

ANOVA F-statistic df p-value 

  69.887 2 < 2.2e-16 

 Comparison t.ratio df p-value 

 headstand - benthic dig -1.519 1066 0.2823 

 headstand - side swim 7.033 1010 <0.0001 

 benthic dig - side swim 11.739 1072 <0.0001 

 

12Table 3.4. Energy expenditure proxies (mean ± s.d.) from CATS tag deployments on PCFG grey whales for 

all deployments combined and within each deployment. N represents the number of dives in the biologging 

data assigned to each broad state using the Hidden Markov Model or number of roll events assigned to each 

foraging tactic using the Classification and Regression Tree model constructed in Chapter 2. ODBA stands 

for Overall Dynamic Body Acceleration (ms-2) and was calculated using three different filters (25% of the 

dominant stroke frequency (dsf), 50% of the dsf, and 70% of the dsf). ODBA was standardized to correct for 

effects of tag placement. Stroke rate (Hz) was standardized to account for the relationship between body size 

and stroke rate. Broad state stroke amplitude was presented as the percent difference in stroke amplitude 

between the transit broad state and the forage or search broad state. Foraging tactic stroke amplitude was 

presented as the percent difference in stroke amplitude between the transit broad state and the foraging 

tactic. Percent difference in broad state and foraging tactic stroke amplitude was calculated from the search 

broad state in deployments D21 and H22, as these deployments did not include transit, and could not be 

calculated for deployment C21 as this deployment only included the forage broad state. Stroke amplitude was 

only presented for individual deployments as raw stroke amplitude values are not comparable between 

deployments. Dive duration (min) was only calculated at the foraging tactic scale to compare between dives 

dominated by different foraging tactics. Note that deployment C21 only includes the forage broad state and 

headstand foraging tactic while deployments D21 and H22 only include the forage and search broad states 

and H22 only includes the side swim foraging tactic. Dashes indicate no data available.   
  Broad state Foraging tactic 

Deploy. 

ID 

Energy expenditure 

proxy 

Forage Search Transit Headstand Benthic dig Side swim 

All N 672 795 389 486 743 661 

 ODBA (25% dsf; ms-2) 1.88 ± 1.43 1.82 ± 2.36 0.73 ± 1.25 2.38 ± 1.82 2.27 ± 1.82 4.39 ± 1.95 

 ODBA (50% dsf; ms-2) 1.17 ± 1.45 1.21 ± 2.23 0.60 ± 1.35 1.52 ± 1.73 1.40 ± 1.77 2.61 ± 1.92 

 ODBA (70% dsf; ms-2)  0.90 ± 1.43 0.89 ± 2.01 0.53 ± 1.46 1.13 ± 1.67 1.07 ± 1.73 1.70 ± 1.77 

 Stroke rate (Hz) 0.34 ± 0.31 0.19 ± 0.16 0.14 ± 0.06 0.60 ± 0.55 0.36 ± 0.40 0.25 ± 0.29 

 Dive duration (min) -- -- -- 2.60 ± 1.29 3.13 ± 1.40 1.48 ± 1.32 

A19 N 11 17 3 1 29 15 
 

ODBA (25% dsf; ms-2) 2.48 ± 1.26 1.13 ± 1.55 0.76 ± 1.04 7.10 3.53 ± 1.82 3.32 ± 1.57 
 

ODBA (50% dsf; ms-2) 1.36 ± 1.26 0.72 ± 1.35 0.58 ± 1.05 2.77 1.63 ± 1.67 1.75 ± 1.62 
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  Broad state Foraging tactic 

Deploy. 

ID 

Energy expenditure 

proxy 

Forage Search Transit Headstand Benthic dig Side swim 

A19 ODBA (70% dsf; ms-2)  1.04 ± 1.22 0.55 ± 1.21 0.49 ± 1.07 1.39 1.21 ± 1.60 1.20 ± 1.49 
 

Stroke rate (Hz) 0.14 ± 0.02 0.11 ± 0.02 0.11 ± 0.01 0.00 0.18 ± 0.19 0.13 ± 0.10 

 Stroke amplitude (% diff) 0.50 0.06 0.00 -1.00 0.25 0.19 

 Dive duration (min) -- -- -- -- 2.68 ± 1.25 2.27 ± 1.36 

B21 N 50 14 14 31 81 25 

ODBA (25% dsf; ms-2) 2.63 ± 1.33 1.08 ± 2.12 0.59 ± 1.06 3.56 ± 1.55 3.56 ± 1.88 4.81 ± 1.79 

ODBA (50% dsf; ms-2) 1.68 ± 1.35 0.78 ± 1.93 0.48 ± 1.05 2.34 ± 1.62 2.18 ± 1.70 3.46 ± 1.68 

ODBA (70% dsf; ms-2)  1.27 ± 1.36 0.61 ± 1.79 0.41 ± 1.05 1.82 ± 1.55 1.61 ± 1.57 2.51 ± 1.73 

Stroke rate (Hz) 0.34 ± 0.08 0.30 ± 0.06 0.31 ± 0.03 0.33 ± 0.18 0.38 ± 0.21 0.46 ± 0.50 

 Stroke amplitude (% diff) 0.81 0.19 0.00 0.57 0.48 0.24 

 Dive duration (min) -- -- -- 2.84 ± 2.30 3.67 ± 1.74 2.06 ± 2.01 

C21 N 3 0 0 3 0 0 

ODBA (25% dsf; ms-2) 1.29 ± 1.04 -- -- 1.00 ± 1.07 -- -- 

ODBA (50% dsf; ms-2) 0.84 ± 1.05 -- -- 0.67 ± 1.05 -- -- 

ODBA (70% dsf; ms-2)  0.67 ± 1.04 -- -- 0.58 ± 1.05 -- -- 

Stroke rate (Hz) 1.16 ± 0.04 -- -- 1.30 ± 0.10 -- -- 

 Stroke amplitude (% diff) -- -- -- -- -- -- 

 Dive duration (min) -- -- -- 3.47 ± 0.08 -- -- 

D21 N 49 13 0 1 27 31 

ODBA (25% dsf; ms-2) 1.38 ± 1.11 1.48 ± 1.36 -- 12.55 1.28 ± 1.28 1.23 ± 1.51 

ODBA (50% dsf; ms-2) 0.94 ± 1.11 0.85 ± 1.26 -- 10.91 0.90 ± 1.23 0.88 ± 1.42 

ODBA (70% dsf; ms-2)  0.75 ± 1.09 0.55 ± 1.28 -- 8.76 0.76 ± 1.15 0.74 ± 1.38 

Stroke rate (Hz) 0.10 ± 0.01 0.07 ± 0.02 -- 0.25 0.11 ± 0.02 0.10 ± 0.03 

 Stroke amplitude (% diff) 0.00 0.00 -- 12.1 0.00 -0.19 

 Dive duration (min) -- -- -- -- 2.88 ± 0.20 2.92 ± 0.63 

E22 N 211 98 168 14 248 62 

ODBA (25% dsf; ms-2) 1.60 ± 1.26 0.99 ± 1.48 0.85 ± 1.19 1.88 ± 1.63 1.63 ± 1.43 2.05 ± 1.63 

ODBA (50% dsf; ms-2) 0.93 ± 1.22 0.75 ± 1.38 0.79 ± 1.23 1.07 ± 1.39 0.94 ± 1.32 1.11 ± 1.48 

ODBA (70% dsf; ms-2)  0.71 ± 1.25 0.63 ± 1.46 0.75 ± 1.35 0.85 ± 1.39 0.71 ± 1.33 0.74 ± 1.52 

Stroke rate (Hz) 0.15 ± 0.03 0.11 ± 0.03 0.13 ± 0.03 0.16 ± 0.05 0.16 ± 0.08 0.17 ± 0.15 

 Stroke amplitude (% diff) 0.19 0.05 0.00 0.05 0.19 0.14 

 Dive duration (min) -- -- -- 3.61 ± 2.07 3.43 ± 1.44 2.92 ± 1.35 

F22 N 76 59 6 168 82 38 

ODBA (25% dsf; ms-2) 1.93 ± 1.17 1.00 ± 1.68 0.58 ± 1.09 2.23 ± 1.58 2.41 ± 1.57 2.83 ± 1.62 

ODBA (50% dsf; ms-2) 1.30 ± 1.19 0.70 ± 1.52 0.48 ± 1.11 1.57 ± 1.49 1.68 ± 1.53 2.03 ± 1.57 

ODBA (70% dsf; ms-2)  1.00 ± 1.20 0.57 ± 1.44 0.43 ± 1.09 1.17 ± 1.46 1.26 ± 1.54 1.48 ± 1.63 

Stroke rate (Hz) 0.32 ± 0.04 0.32 ± 0.06 0.40 ± 0.04 0.46 ± 0.44 0.30 ± 0.31 0.25 ± 0.27 

 Stroke amplitude (% diff) 0.67 0.33 0.00 0.47 0.20 0.00 

 Dive duration (min) -- -- -- 2.60 ± 64 2.09 ± 0.88 1.83 ± 0.73 
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  Broad state Foraging tactic 

Deploy. 

ID 

Energy expenditure 

proxy 

Forage Search Transit Headstand Benthic dig Side swim 

G22 N 120 152 18 214 126 30 

ODBA (25% dsf; ms-2) 1.69 ± 1.32 1.23 ± 1.65 0.68 ± 1.23 2.39 ± 1.97 2.29 ± 1.99 5.26 ± 1.46 

ODBA (50% dsf; ms-2) 1.08 ± 1.31 0.79 ± 1.57 0.50 ± 1.19 1.42 ± 1.84 1.48 ± 1.90 2.83 ± 1.48 

ODBA (70% dsf; ms-2)  0.84 ± 1.27 0.63 ± 1.52 0.41 ± 1.19 1.04 ± 1.73 1.12 ± 1.80 2.03 ± 1.48 

Stroke rate (Hz) 0.67 ± 0.32 0.20 ± 0.20 0.15 ± 0.14 0.62 ± 0.52 0.70 ± 0.41 0.48 ± 0.54 

 Stroke amplitude (% diff) 0.00 -0.05 0.00 -0.05 0.21 -0.11 

 Dive duration (min) -- -- -- 2.30 ± 1.06 2.84 ± 1.38 2.11 ± 1.33 

H22 N 6 1 0 0 0 14 

ODBA (25% dsf; ms-2) 1.27 ± 1.17 1.00 -- -- -- 1.53 ± 1.30 

ODBA (50% dsf; ms-2) 0.78 ± 1.16 0.68 -- -- -- 0.99 ± 1.36 

ODBA (70% dsf; ms-2)  0.62 ± 1.19 0.51 -- -- -- 0.84 ± 1.36 

Stroke rate (Hz) 0.11 ± 0.01 0.11 -- -- -- 0.11 ± 0.06 

 Stroke amplitude (% diff) 0.47 0.00 -- -- -- 0.60 

 Dive duration (min) -- -- -- -- -- 2.66 ± 0.51 

I22 N 81 371 175 4 79 395 

ODBA (25% dsf; ms-2) 3.35 ± 1.31 3.09 ± 2.41 0.66 ± 1.21 5.58 ± 1.92 3.67 ± 1.43 6.23 ± 1.54 

ODBA (50% dsf; ms-2) 2.16 ± 1.32 1.99 ± 2.32 0.48 ± 1.16 3.46 ± 2.16 2.48 ± 1.40 3.60 ± 1.57 

ODBA (70% dsf; ms-2)  1.63 ± 1.31 1.38 ± 2.09 0.40 ± 1.15 2.41 ± 2.29 1.95 ± 1.36 2.18± 1.51 

Stroke rate (Hz) 0.17 ± 0.03 0.17 ± 0.06 0.12 ± 0.03 0.32 ± 0.39 0.18 ± 0.06 0.19 ± 0.11 

 Stroke amplitude (% diff) 0.50 0.33 0.00 0.42 0.58 0.25 

 Dive duration (min) -- -- -- 1.35 3.13 ± 1.11 1.05 ± 1.15 

J22 N 67 70 5 50 71 51 

ODBA (25% dsf; ms-2) 1.73 ± 1.39 1.23 ± 1.55 0.56 ± 1.23 2.32 ± 1.92 2.44 ± 1.90 2.77 ± 1.65 

ODBA (50% dsf; ms-2) 1.13 ± 1.35 0.83 ± 1.46 0.46 ± 1.12 1.38 ± 1.75 1.54 ± 1.86 1.67 ± 1.58 

ODBA (70% dsf; ms-2)  0.88 ± 1.32 0.65 ± 1.41 0.40 ± 1.13 1.03 ± 1.63 1.15 ± 1.80 1.27 ± 1.51 

Stroke rate (Hz) 0.74 ± 0.43 0.34 ± 0.37 0.08 ± 0.10 1.28 ± 0.65 0.90 ± 0.66 0.71 ± 0.55 

 Stroke amplitude (% diff) -0.34 -0.24 0.00 -0.17 -0.24 -0.41 

 Dive duration (min) -- -- -- 3.57 ± 1.37 2.63 ± 1.38 1.86 ± 0.79 

 

Deployments with higher stroke rates also tended to have greater variability in their 

stroke rate for each broad state (Table 3.4; Figure 3.2c). Five of nine deployments had the 

highest stroke rate in the forage state, which agreed with the results from the stroke rate model 

for all deployments combined. Two of nine deployments appeared to have equivalent stroke rate 

for the forage and search states, while two deployments suggested there were no differences in 

stroke rate between broad states.   
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 7Figure 3.1. Overall Dynamic Body Acceleration (ODBA; ms-2) for three broad behavior states calculated 

from CATS tag deployments on ten PCFG grey whales (n = 1,856 dives), compared  across all deployments 

(a,b,c) and across individual deployments (d,e,f) calculated using a filter of 25% dominant stroking frequency 

(dsf; a,d), 50% dsf (b,e), and 70% dsf (c, f).  ODBA was standardized to account for differences in tag 

placement following the methods of (Isojunno and Miller, 2015). Open box represents the mean ODBA for 

each broad state. Note that in the model comparing ODBA between broad states, data were log-transformed. 

Each color represents a different deployment. Note that deployment C21 only includes the forage broad state 

while deployments D21 and H22 only include forage and search broad states.  

 

The results from the stroke amplitude analysis within each deployment suggested stroke 

amplitude was highest in the forage state, with this result supported by five of seven deployments 

with all broad states included (Table 3.4; Figure 3.2d). For the two deployments with only  

forage and search states identified, stroke amplitude was not significantly different between these 

broad states (Table 3.4; Figure 3.2d). 

0.37

1

2.72

7.39

L
n
 O

D
B

A
 (

m
/s

2
) 

2
5
%

 d
s
f 
fil

te
r

a.

0.37

1

2.72

7.39

L
n
 O

D
B

A
 (

m
/s

2
) 

5
0
%

 d
s
f 
fil

te
r

b.

0.37

1

2.72

Forage Search Transit

Broad state

L
n
 O

D
B

A
 (

m
/s

2
) 

7
0
%

 d
s
f 
fil

te
r

c.

0.37

1

2.72

7.39

L
n
 O

D
B

A
 (

m
/s

2
) 

2
5
%

 d
s
f 
fil

te
r

d.

0.37

1

2.72

7.39

L
n
 O

D
B

A
 (

m
/s

2
) 

5
0
%

 d
s
f 
fil

te
r

e.

0.37

1

2.72

Forage Search Transit

Broad state

L
n
 O

D
B

A
 (

m
/s

2
) 

7
0
%

 d
s
f 
fil

te
r

f.

Deployment ID

A19

B21

C21

D21

E22

F22

G22

H22

I22

J22



48 

 

 

 

 

8Figure 3.2. Broad state stroke metrics of predicted glide probability (a), stroke rate (Hz) compared between 

broad states (b) and across individual deployments (c) and stroke amplitude (radians per s; d) calculated 

from CATS tag deployments on ten PCFG grey whales (n = 1,856 dives). Predicted glide probability from the 

fitted generalized linear mixed model is shown on the probability scale by the blue dot with pink error bars 

representing the 95% confidence interval around the predicted effect (a). Stroke rate was standardized by the 

dominant stroking frequency (dsf) to account for the negative relationship between stroke rate and body 

length. The open box represents the mean stroke rate of each broad state (b). Note that in the model 

comparison, zero-values were excluded, and stroke rate was log-transformed. Each color represents a 

different deployment (c). Stroke amplitude values cannot be compared across deployments and the open box 

represents the mean stroke amplitude for that broad state within the deployment (d). Note that deployment 

Broad state

G
li
d

e

0.0
0.2
0.4
0.6
0.8
1.0

forage search transit

0.0

0.5

1.0

1.5

Forage Search Transit

Broad state

S
tr

o
k
e
 r

a
te

 (
H

z
) 

d
s
f 
s
ta

n
d
a
rd

iz
e
d

b.

0.0

0.5

1.0

1.5

Forage Search Transit

Broad state
S

tr
o
k
e
 r

a
te

 (
H

z
) 

d
s
f 
s
ta

n
d
a
rd

iz
e
d

Deployment ID

A19

B21

C21

D21

E22

F22

G22

H22

I22

J22

c.

I22 J22

E22 F22 G22 H22

A19 B21 C21 D21

Forage Search Transit Forage Search Transit

Forage Search Transit Forage Search Transit

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Broad state

S
tr

o
k
e
 a

m
p
lit

u
d
e
 (

ra
d
ia

n
s
 p

e
r 

s
)

d.

a

. 



49 

 

C21 only includes the forage broad state while deployments D21 and H22 only include forage and search 

broad states.  

Foraging tactics  

Likelihood ratio tests for nested model comparison showed that the models including 

foraging tactic perform significantly better than the models without the fixed factor for all energy 

expenditure proxies (Table 3.2). 

The ODBA models indicate that foraging tactic significantly affected ODBA calculated 

with all filters. Pairwise comparisons of the mean ODBA indicate that ODBA calculated with all 

filters was significantly different between side swims and the other foraging tactics (Table 3.3), 

with higher ODBA for the side swim foraging tactic compared to headstands and benthic digs 

(Figure 3.3a-c). The mean ODBA values for side swims were approximately 1.5-1.8 times 

higher than headstands and 1.6-1.9 times higher than benthic digs (Table 3.4). Side swims had 

the highest calculated variation in ODBA, while headstands had the lowest calculated variation 

in ODBA (Table 3.4).   

Exploration of ODBA patterns by individual deployment indicated that individual effects 

on ODBA values for foraging tactics varied by the filter used to calculate ODBA, with more 

consistency between patterns within deployments as the dsf filter was increased (Table 3.4; 

Figure 3.3d-f). A variety of within-deployment patterns existed for ODBA calculated with the 

25% dsf and 50% dsf filters (Figure 3.3d,e)—the highest ODBA for side swims (two of eight 

deployments 25% dsf vs three of eight deployments 50% dsf), the highest ODBA for headstands 

(two of eight deployments 25% dsf and 50% dsf), no difference in ODBA between foraging 

tactics (one of eight deployments 25% dsf and 50% dsf), and ODBA differing between side 

swims and one other tactic (three of eight deployments 25% dsf vs two of eight deployments 

50% dsf). ODBA calculated with the 70% dsf filter had the highest consistency in the patterns 

observed (Figure 3.3f), with the highest ODBA during side swims for three of eight 

deployments, the highest ODBA in headstands in one of eight deployments, and no difference in 

ODBA between foraging tactics for four of eight deployments.  

Visual examination of the glide model outputs indicates that side swims had a higher 

glide probability than benthic digs and headstands, while the estimated glide probability was 

comparable between headstands and benthic digs (Figure 3.4a). The stroke rate model and 

pairwise comparisons indicated that headstands have a significantly different stroke rate  
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9Figure 3.3. Foraging tactic Overall Dynamic Body Acceleration (ODBA; ms-2) calculated from CATS tag 

deployments on ten PCFG grey whales (n = 1,890 roll events), compared between foraging tactics (a,b,c)  and 

across individual deployments (d,e,f) calculated using a filter of 25% dominant stroking frequency (dsf; a,d), 

50% dsf (b,e), and 70% dsf (c,f).  ODBA was standardized to account for differences in tag placement 

following the methods of (Isojunno and Miller, 2015). Open box represents the mean ODBA for each foraging 

tactic. Note that in the model comparing ODBA between foraging tactics, data were log-transformed. Each 

color represents a different deployment. Note that deployment C21 only has the headstand foraging tactic 

while deployment H22 only has the side swim foraging tactic.  

 

compared to the other foraging tactics (Table 3.3). The mean stroke rate of headstands was 

approximately 1.7 times that of benthic digs and 2.4 times that of side swims (Table 3.4; Figure 

3.4b). 

Exploratory analysis revealed high individual effects in the patterns of stroke rate across 

foraging tactics within deployments (Table 3.4; Figure 3.4c). Only two of eight deployments 

supported the overall pattern of headstands having higher stroke rates than benthic digs and side 
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10Figure 3.4. Foraging tactic stroke metrics of predicted glide probability (a), stroke rate (Hz) compared 

between foraging tactics (b) and across individual deployments (c) and stroke amplitude (radians per s; d) 

calculated from ten CATS tag deployments on PCFG grey whales (n = 1,890 roll events). Predicted glide 

probability from the fitted generalized linear mixed model is shown on the probability scale by the blue dot 

with pink error bars representing the 95% confidence interval around the predicted effect (a). Stroke rate 

was standardized by the dominant stroking frequency (dsf) to account for the negative relationship between 

stroke rate and body length. The open box represents the mean stroke rate of each foraging tactic (b). Note 
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that in the model comparison, zero-values were excluded, and stroke rate was log-transformed. Each color 

represents a different deployment (c). Stroke amplitude values cannot be compared across deployments and 

the open box represents the mean stroke amplitude for that foraging tactic within the deployment (d). Note 

that deployment C21 only has the headstand foraging tactic while deployment H22 only has the side swim 

foraging tactic.  

 

swims. The deviation from the stroke rate model results in the remaining deployments suggests 

high individual differences in fluking patterns while performing foraging tactics.  

Grey whale stroke rates for both benthic digs and side swims were higher than bowhead  

whale stroke rates during continuous ram filtration feeding, but similar (if not slightly lower) 

than lunge stroke rates for humpback and Bryde’s whales (Table 3.5). Grey whale side swim 

stroke rates were most similar to the lunge stroke rates of blue whales, a species that is 

approximately twice as long as grey whales (Table 3.5). Headstands are the foraging tactic 

where the stroke rate is elevated compared to other tactics of other species with similar dsf, total 

length, and tactic duration, while the side swim tactic has stroke rates that are below average 

when compared to other species (Figure 3.5).  

High individual differences in patterns of ODBA and stroke rate within deployments 

were also reflected in stroke amplitude. Comparison of stroke amplitude for each foraging tactic 

within deployments does not show a consistent pattern (Table 3.4; Figure 3.4d).  

The dive duration model indicated a significant effect of foraging tactic and pairwise 

comparisons of the mean showed that the duration of dives dominated by side swims were 

significantly different from dives dominated by other foraging tactics (Table 3.3). Dives 

dominated by side swims were approximately half the duration of those dominated by other 

foraging tactics (Table 3.4; Figure 3.6a).  

Exploratory analysis indicated that individual patterns of dive duration for dives 

dominated by different foraging tactics were consistent across deployments (Table 3.4; Figure 

3.6b). Four of eight deployments supported the model result for all tags combined, suggesting 

that dives dominated by side swims were shortest. One of eight deployments suggested that dives 

dominated by side swims were only shorter than dives dominated by benthic digs and three of 

eight deployments suggested that the dominant tactic of a dive does not influence the dive 

duration.  
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13Table 3.5. Comparison of foraging tactic stroke rates (Hz) between baleen whale species.  Asterisks indicate species of similar length to grey whales. 

Dominant stroke frequency (dsf) and total length from each source was used to account for the negative relationship between stroke rate and body 

length (Gough et al., 2021; Sato et al., 2007).  Tactic duration represents the interval over which stroke rate was calculated for each foraging tactic.  

Species Foraging tactic Stroke rate 

(Hz) 

Dsf 

(Hz) 

Total 

length (m) 

Tactic 

duration (s) 

Reference 

Grey Side swim ~ 0.25 ± 0.29 0.16 10.79 26 This study 
 

Benthic dig ~ 0.36 ± 0.40  0.16 11.22 71 This study 

 Headstand    0.60 ± 0.55 0.16 11.23 20 This study 

Bowhead* Ram filtration ~ 0.12 ± 0.08 0.07 9.60 -- (Simon et al., 2009) 

Humpback* Lunge ~ 0.34 ± 0.011 0.24 11.06 10 (Gough et al., 2021) 
 

Lunge ~ 0.45 ± 0.05 0.26 -- -- (Simon et al., 2012) 

Bryde's* Lunge ~ 0.42 ± 0.010 0.24 12.04 10 (Gough et al., 2021) 
 

Lunge ~ 0.35 -- -- 30 (Izadi et al., 2022) 

Fin Lunge ~ 0.32 ± 0.018 0.24 18.90 10 (Gough et al., 2021) 
 

Lunge ~ 0.27 ± 0.04 0.30 -- 16 (Goldbogen et al., 2006) 

Blue Lunge ~ 0.24 ± 0.004 0.18 22.41 10 (Gough et al., 2021) 
 

Lunge ~ 0.3 -- -- 20 (Goldbogen et al., 2011) 

Antarctic minke Lunge ~ 0.49 ± 0.008 0.38 7.30 10 (Gough et al., 2021) 

Sei Lunge ~ 0.30 0.22 16.62 10 (Gough et al., 2021) 
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11Figure 3.5. Comparison of stroke rate between baleen whale species performing different foraging tactics 

accounting for dominant stroke frequency (a), total length (b), and foraging tactic duration (c) using 

published data and the results from this study.  

 

Discussion 

Biologging-derived proxies of energy expenditure were used for the first time to estimate 

the relative energetic cost of different foraging behaviours in grey whales. We conclude that 

stroke rate was the best proxy for inferring relative energy expenditure in PCFG grey whales. 

Stroke rates were higher for the forage state compared to search or transit and the headstand 

foraging tactic compared to benthic digs and side swims. The inferred higher energetic cost of 

forage and headstand behaviours indicate a high susceptibility of PCFG grey whales to changes 

in prey quality and quantity that may reduce the net energetic gain from performing high energy 

foraging tactics.  

We calculated multiple proxies of energy expenditure from biologging data and evaluated 

these proxies in similar ways, creating a unique opportunity to comment on the most effective 

energy expenditure proxy. At the broad state scale, ODBA suggested that forage (25% and 70% 

dsf filters) and search (50% dsf filter) are the most energetically costly states, and that transit is  
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12Figure 3.6. Dive duration (min) of dives with different dominant foraging tactics compared across (a) and 

within deployments (b) calculated from ten CATS tag deployments on PCFG grey whales.  Dominant forging 

tactics were defined as the tactic that accounted for at least half of the time spent rolled during the dive. The 

open box represents the mean dive duration for each foraging tactic. Note that in the model comparison, dive 

duration was log-transformed. Each color represents a different deployment. Note that deployment A19 does 

not have any dives dominated by the headstand foraging tactic, deployment C21 only has dives dominated by 

the headstand foraging tactic, and deployment H22 only has dives dominated by the side swim foraging tactic.  

 

the least (all dsf filters), while stroke rate and amplitude both suggested that foraging is the most 

energetically costly state. At the foraging tactic scale, ODBA and dive duration suggested side 

swims were the most energetically expensive foraging tactic, while the glide probability 

suggested sides swims were the least expensive foraging tactic. Stroke rate suggested headstands 

were the most energetically expensive tactic and stroke amplitude was inconclusive, therefore 

suggesting stroke amplitude is not a useful proxy for estimating energy expenditure of foraging 

tactics in grey whales.  

The differences in the foraging tactic determined to be most energetically expensive by 

each energy expenditure proxy is likely driven by the signals captured by each proxy. For 

instance, stroke rate is an isolation of the fluking signal while ODBA captures body movement in 

all three axes. Therefore, ODBA captures the energy from each fluke beat in addition to any 

other acceleration signal detected by the sensor and is likely to be more sensitive to other 

movements in addition to fluking, suggesting that these metrics can hint at the differing 

mechanics of side swims and headstands. Side swims, in addition to fluking, have jaw snapping 

and pectoral fin sculling (Movie S1; L. Torres unpublish data) that likely contribute to the 
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elevated body movement and higher ODBA values of this foraging tactic. Headstands, on the 

other hand, likely require more fluking to address buoyancy control and hold the individual’s 

extremely pitched position in the water column (see Chapter 2) than to propel the body through 

the water column, leading to a higher stroke rate than side swims.  

Based on our results, we conclude that stroke rate is the best proxy and should be used in 

future analyses of energy expenditure in grey whales. Stroke rate was easiest to calculate and 

compare between individual deployments and with studies of other baleen whales. Stroke rate 

also did not require additional computational steps (e.g., complimentary filtering to calculate 

ODBA) that introduce additional sources of error and more individual effects. Stroke rate also 

does not incorporate any noise in the signal that is due to contact with the benthos while feeding 

that is likely to occur with ODBA, and can include surface behaviours as this proxy does not 

need to account for the tag breaking the surface. Unlike the dive duration proxy, stroke rate does 

not depend on the targeted prey (Stelle et al., 2008 citing Guerro, 1989), prey patch quality 

(Charnov, 1976; MacArthur and Pianka, 1966), dive depth and other confounding factors that are 

incorporated with dive duration. Stroke amplitude cannot be compared across deployments, and 

the lack of a consistent pattern across individuals at the foraging tactic scale suggests that stroke 

amplitude is not a useful proxy of energy expenditure. The limitations of the other proxies 

further support stroke rate as being the most useful proxy to estimate energy expenditure.  

Overall, the biologging proxies of energetic expenditure find transit to be the least costly 

state, which is consistent with focal follow studies that use respiration metrics as a proxy. Longer 

blow intervals (i.e., the time submerged between breaths during the surface period following a 

dive), which indicate a lower metabolic cost (Fahlman et al., 2017), were found during travel and 

non-foraging behaviours compared to foraging behaviour (including searching) for grey whales 

(Mallonee, 1991; Stelle et al., 2008; Wursig et al., 1986). The respiration metrics used in these 

studies could not distinguish a difference in energetic cost between forage and search states, 

although this is likely related to the inability to effectively define forage and search as separate 

behaviours (Mallonee, 1991; Wursig et al., 1986).  

The stroke rate of side swims and benthic digs was compared to the stroke rate of other 

baleen whale foraging behaviours as this proxy is comparable across studies and to species of 

similar size (Gough et al., 2021; Sato et al., 2007). Side swims represent the foraging tactic that 
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is most similar to the continuous ram filtration feeding and lunges that target pelagic zooplankton 

prey or small schooling fishes through forward movement. While benthic digs are not as 

comparable to these pelagic strategies, this tactic represents the traditional feeding tactic of grey 

whales (Nerini, 1984), and the fluke is assumed to have full range of motion given the body 

orientation of the whale (see Chapter 2), thus warranting comparison of energetic costs of 

benthic digs with published values for other baleen whale foraging behaviours. The higher stroke 

rate of side swims and benthic digs is two to three times higher compared to the ram filtration 

stroke rate (Simon et al., 2009), suggesting a higher energetic cost of these grey whale foraging 

tactics compared to the typical feeding behaviour of balaenids (e.g., bowheads and right whales). 

The side swim stroke rate was about 25-44% lower than the lunge stroke rate of similarly sized 

rorquals (e.g., humpback and Bryde’s whales) while benthic digs had a similar stroke rate, 

ranging from 6% higher to 20% lower than lunges. Overall, these results suggest that the grey 

whale side swims are less energetically costly than lunges, but benthic digs may be more similar 

in energetic cost to lunges. The similar energetic cost between benthic digs and lunges may stem 

from a similar forward momentum needed to plow through the sediment in benthic digs as for 

the acceleration needed for a successful lunge.  

An interesting finding is that headstands seem to be at the extreme of energetic cost, and 

is a foraging tactic that is unique to the PCFG foraging grounds (Torres et al., 2018). It is not 

clear why PCFG grey whales utilize a different foraging ground than ENP whales. Caloric 

density of prey is similar or higher in the PCFG range compared to the Arctic (Hildebrand et al., 

2021), suggesting that either prey patches are denser and more numerous in the PCFG range 

compared to the Arctic, or capture efficiencies are higher in headstands compared to other 

foraging tactics to compensate for the increased energetic cost of the headstands. It is also 

possible that the PCFG grey whales are forced to utilize headstands to exploit the epi-benthic 

prey in a foraging habitat composed of a reef mosaic. In other words, the transition to headstands 

with increased length (Bird et al., in prep) is due to an inability of longer whales to maneuver 

around rocky reefs. As such, they must increasingly rely on the stationary headstand tactic to 

exploit rocky reefs, despite the elevated relative energetic cost. More data is needed on the prey 

density in both foraging grounds and capture efficiency of each foraging tactic for the drivers of 

PCFG foraging ground utilization to be fully understood.  
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The skinnier and shorter morphology of PCFG grey whales compared to the ENP 

(Bierlich et al., 2023; Torres et al., 2022) are also interesting to examine in the context of these 

results as it is unclear if these morphological differences indicate that the PCFG represents an 

ecological trap or an ecological opportunity.  In other words, do the higher energetic cost of side 

swims and headstands potentially indicate these morphological differences are due to nutritional 

stress (i.e., an ecological trap), or does the morphology of PCFG grey whales allow this group to 

exploit a different foraging ground through the use of unique, adapted foraging tactics (i.e., an 

ecological opportunity). The elevated cost of side swims and headstands could indicate that 

overall grey whales are better suited for benthic foraging rather than the headstand and side swim 

foraging tactics used by the PCFG (Woodward et al., 2006), supporting the ecological trap 

theory. Yet, the site-fidelity and maternal recruitment to the PCFG range by whales that regularly 

employ these feeding tactics (Bird et al. in prep) indicates the viability of these foraging tactics 

and thus supports the ecological opportunity theory. A better understanding of prey density and 

capture efficiency for each foraging tactic is needed to be able to fully address these hypotheses.  

Body length and body condition are thought to be important morphological variables that 

affect individual behaviour. However, the standardization method for the energy expenditure 

proxies we used to account for tag positioning (ODBA) and body size (stroke rate) removes 

some of the morphological impacts on the energetic cost of different behaviours (Figure H1a,b). 

The small sample size of deployments further limits the ability to detect differences in 

association with morphology. Therefore, it is possible that a larger sample size of deployments is 

needed to account for the morphological differences and high individual variation in how 

individuals perform behaviours that in turn impact the estimated energetic cost. This is especially 

true for the PCFG where energetics may provide a mechanism for explaining the observed 

specialization between whales of different lengths (Bird et al. in prep).  

Future directions 

The energy expenditure proxies calculated in this study must be linked to oxygen 

consumption to be infer metabolic rate and hence determine if the differences in the proxies 

between behaviours truly impact the energetic cost. Future aims should work to link these 

biologging-derived energy expenditure proxies to oxygen consumption to estimate a field 

metabolic rate for PCFG grey whales. Recent work refining estimates of tidal volume from free-
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range grey whales will benefit from the fine-scale behavioural energetics estimates (Sumich et 

al., in revision).  Additionally, this study only obtained these biologging proxies from PCFG grey 

whales, based on the assumption that the benthic dig included in the biologging data is in fact 

representative of the traditional benthic dig predominantly used by ENP and WNP grey whales. 

Therefore, future efforts should focus on deploying biologging tags on these populations to 

compare energy expenditure proxies across the grey whale foraging groups.  

Other drivers of behavioural energetics, such as morphology, foraging habitat, and 

targeted prey, anthropogenic disturbance, were not evaluated by these biologging proxies. 

Therefore, future studies should include a larger sample size to tease apart the morphological 

impacts on energetic cost of behaviours that was not feasible in this study. Additionally, prey 

type and density should be included in models estimating the differences in energetic cost of 

behaviours and capture efficiency of different foraging tactics should be investigated to 

determine if this is driving the use of higher energy tactics in the PCFG foraging grounds. 

Biologging-derived energy expenditure proxies estimated in this study can be used in future 

work constructing energy landscapes, or the energetic cost of moving through variable habitat 

(Wilson et al., 2012), for PCFG grey whales when linking prey and habitat to the cost of 

foraging, as this can provide information about protecting critical foraging habitat.  

A criticism of biologging studies is that the data are rarely connected to fitness impacts 

on the population (Crossin et al., 2014). Therefore, future work should link the biologging-

derived energetic cost of behaviours to the fitness metrics, such as body condition and 

reproductive success, to address questions of which foraging tactics related to the highest 

foraging success.  

Conclusions 

For the first time, biologging-derived energy expenditure proxies were used to estimate 

the relative energetic cost of grey whale behaviour states and foraging tactics. Foraging was 

more energetically expensive than transiting or searching, and headstand was a more 

energetically costly foraging tactic than benthic dig and side swim (based on our recommended 

energy expenditure proxy of stroke rate). Despite the high stroke rate of headstands, this remains 

a prominent foraging tactic observed in the PCFG foraging grounds, indicating that despite the 

elevated stroke rate, this foraging tactic likely yields a higher capture efficiency of prey within 
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the PCFG foraging range than other tactics assessed. This theory is supported by the  ontogenetic 

shift observed in PCFG whales transitioning from higher probability of side swims to headstands 

with length/age (Bird et al., in prep). If the elevated stroke rate in headstands is used to overcome 

buoyancy, then older whales likely develop a mechanism to further counteract buoyancy and can 

make headstands even more efficient.  

Overall, our study contributes to a foundational understanding of foraging energetics in a 

species of conservation concern (COSEWIC, 2017). Estimates of foraging energetics provides 

fundamental groundwork to understand the mechanisms that underlie behavioural choices. These 

relative estimates of energy expenditure also provide a means to estimate fitness impacts on the 

PCFG grey whales which are showing signs of nutritional stress (Akmajian et al., 2021; Bierlich 

et al., 2023; Torres et al., 2022) and allow for this unique group to be included in grey whale 

bioenergetics models to better understand the energy requirements for this population. 
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Chapter 4: General discussion 

Summary of findings 

This study is the first to quantitatively define foraging signals (Chapter 2) and estimate 

the relative energetic cost of behaviours (Chapter 3) in grey whales from biologging data. At the 

dive scale, I was able to define an intermediate search state in addition to forage and transit states 

using turn angle, dive duration, dive tortuosity, and presence of roll events in the dive. I found 

that PCFG grey whales spent a higher proportion of their time in forage and search states 

compared to transit, which was expected because the data came from whales on their foraging 

grounds, indicating that transit should be limited to moving between areas of intensive feeding. 

Headstands, benthic digs, and side swims were defined using body position variables (e.g., pitch, 

roll, and water depth to body length ratio) and occurred in relatively equal proportions for all 

deployments combined, although there was high individual preference across deployments. 

Stroke rate was found to be the best biologging-derived proxy of energy expenditure to use 

moving forward, as it was the easiest to calculate, the most comparable across deployments and 

studies, and had fewer limitations than the other proxies used in Chapter 3. Foraging and 

headstanding were found to be the most energetically costly behaviours at the broad state and 

foraging tactic scale according to stroke rate.  

Strengths and weaknesses 

The quantitative behavioural definitions I derived from the biologging data benefited 

from the long-term field program established with the PCFG grey whales. Previous land-based 

and drone focal follow studies greatly informed the summary metrics used to detect foraging in 

the biologging data. The turn angle and dive tortuosity signals used to differentiate between 

broad states were similar to those in the residence in space and time index used in previous focal 

follow studies (Hildebrand et al., 2022; Sullivan and Torres, 2018). However, the roll presence 

metric extended beyond focal follows, and was used as a proxy for foraging tactics performed at 

depth that could not be detected with the depth limitation imposed on the focal follow methods.  

Drone ethograms suggested that the pitch and roll of the animal were going to be helpful 

for defining foraging tactics. However, the CART model constructed using the biologging data 

did not rely as heavily on roll. Instead, the biologging data used the depth to body length ratio, 

which captured how the water column depth limited the foraging tactics able to be used, which is 
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not possible to quantify from drone focal follows. The complementary data available for this 

population from drone focal follows also allowed for validation of the behavioural classification 

using the biologging data.  

An additional strength of using biologging data is that it was not limited by the visibility 

constraints of focal follow methods. Biologging data were able to quantitatively describe benthic 

digs, which were not included in the drone ethogram as this foraging tactic occurs at depth where 

the drone cannot detect it (Torres et al., 2018).  The biologging tags were also able to record 

night time grey whale behaviour for the first time. 

During night, I found the proportion of searching and side swims increased, foraging 

tactics were shallower and more left-rolled, and the amount of surface time slightly increased. 

These results suggest that grey whales use visual cues to detect their prey, leading to more 

exploratory search behaviour at night and higher use of side swims at night. The shallower and 

more left-rolled foraging tactics are interesting given that grey whales are known to be benthic 

foragers with significant right-side lateralization (Woodward and Winn, 2006). This suggests 

that either PCFG grey whales forage in shallower habitats at night or become more pelagic 

feeders at night. Cetaceans have been documented to use their right eye to track prey (Jaakkola et 

al., 2021) and a quasi-diel vertical migration has been described for mysids (Alldredge and King, 

1980; Mauchline, 1980), supporting the idea that PCFG grey whales forage more pelagically at 

night and roll left to track prey above them.  

Another strength of my study is the calculation of multiple energy expenditure proxies 

defined from the biologging data that were all used in similar ways to compare the relative 

energetic cost between foraging behaviours. Very few studies have included multiple 

accelerometry-derived proxies of energetic cost (i.e., ODBA, stroke rate, stroke amplitude, and 

duration of dives). Comparing these different proxies gave me a unique opportunity to comment 

on the utility of each metric.  

Based on the variability of the within deployment comparisons of ODBA calculated with 

different complementary filters (as well as the need to remove surface influence and the 

sensitivity of ODBA to noise from interactions with the benthos), I concluded that ODBA is not 

an ideal energy expenditure proxy for grey whales. Similarly, raw values of stroke amplitude 

cannot be compared across deployments and the lack of consistent patterns within deployments 



63 

 

suggests stroke amplitude is not an effective proxy. Duration of dives with different foraging 

tactics performed should also not be used to estimate energetic cost as there are many 

confounding factors (e.g., prey density and type, habitat, etc.) that influence dive duration. 

Ultimately, stroke rate was found to be the best proxy of energy expenditure because it was 

easiest to calculate and compare not only within deployments but across studies and different 

species.  

The biggest caveat to keep in mind when interpreting the results from my study is the 

small numbers of deployments (n = 10). Even though my unit of analysis was hundreds to 

thousands of roll events and dives within each deployment, and my analysis accounted for the 

repeated measurement on individuals, it is important to keep in mind that only 10 individual grey 

whales were included in this study from limited parts of the PCFG range and most individuals 

were from the same demographic unit. The patterns of high individual variability in behaviour 

choice (Chapter 2) and high variation in energy expenditure proxies (Chapter 3) suggest that 

larger sample sizes are needed in future work.  

A final caveat concerns the assumption that the benthic dig captured in the biologging 

data from PCFG grey whale deployments were the same as the benthic dig performed in the 

Arctic. However, it is unclear if the benthic dig performed in the PCFG range is truly used to 

forage on invertebrates buried in the benthos or if this tactic is used to target benthic swarms of 

mysids hovering above the sediment. For this assumption to be validated, high-resolution 

accelerometry tags need to be deployed on ENP and WNP grey whales foraging on Arctic 

feeding grounds.  

Future directions 

The quantitative definitions of foraging behaviour I established, and the estimates of 

relative energetic cost of behaviours I calculated lay the groundwork for future biologging 

studies of grey whales to fulfill the motivation of this project for including PCFG grey whales in 

existing grey whale bioenergetics models (Agbayani, 2022; Villegas-Amtmann et al., 2017, 

2015). Future work should focus on linking the habitat and prey data with the behavioural and 

energetics data to determine how foraging behaviour changes with different prey densities and 

types as well as with habitat. Additionally, by linking foraging behaviour with prey, an estimate 

of net energy gain can be obtained, and the capture efficiencies of different tactics can be 
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evaluated. These net energy gain and capture efficiency parameters will be important to include 

in future PCFG grey whale bioenergetic models.  

Another parameter necessary for a PCFG grey whale bioenergetics is the field metabolic 

rate. To achieve this from the data collected for my study, the energy expenditure proxies 

calculated need to be linked with oxygen consumption. Therefore, future work should focus on 

the relationship between stroke rate, the recommended energy expenditure proxy from this study, 

with measures of oxygen consumption. This is likely to come from respiration rates, which can 

become more accurate with better estimates of tidal volume from watching video footage of 

blowholes during exhalations and inhalations (Sumich et al., in revision). This footage of 

blowholes can come from tag videos or drone focal follows.   

A major criticism of biologging studies is the lack of connection of the data to fitness 

impacts on the population (Crossin et al., 2014). The well-studied nature of the PCFG grey 

whales lends themselves nicely to rectifying this as long-term data and high resighting of 

individuals in this population allow for extensive knowledge on reproductive histories and 

changes in body condition. Therefore, pairing this data set with biologging data from individuals 

would allow for individual behavioural choices to be linked with their fitness and be explained 

by the behavioural energetics.  

Conclusions 

This is the first study to quantitatively define foraging behaviour in PCFG grey whales, 

and estimate the relative energetic cost of foraging using high-resolution accelerometry data 

from biologging tags. It establishes the effectiveness of biologging data in behavioural ecology 

and lays the groundwork to further estimate parameters needed for a PCFG grey whale 

bioenergetics model. The results of my research can be used to construct an energy landscape 

(Wilson et al., 2012) to identify critical foraging habitats for PCFG grey whales, and ultimately 

help to mitigate the impacts of the various conservation threats facing this species.  
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Appendices 

Appendix A: Selecting data streams for Hidden Markov Models   

Histograms of the movement metrics were examined to determine the variables that can 

be used to differentiate between dive types and therefore would be appropriate to include in the 

Hidden Markov Models (HMMs) as data streams to help identify different broad states (e.g., 

forage, search, transit).  

Both dive duration and maximum depth are helpful dive characteristics that can be used 

to classify broad state. Dive duration appears to have multiple peaks at approximately 25, 75, and 

175 seconds. Maximum dive depth also appears to have a strongly bimodal distribution. It is 

expected that foraging dives will be longer duration and deeper than transiting dives, with search 

behaviour having intermediate duration and depth (Stelle et al., 2008; Wursig et al., 1986).  

Surface recovery period and the ratio of surface to dive time both reflect the animal’s 

recovery following a dive. The surface recovery period metric has a distribution with clearer 

modes, likely indicating it is the more useful metric to consider when constructing an HMM. 

Surface recovery periods are the shortest for foraging and the longest for traveling during focal 

follows (Stelle et al., 2008), although it is unclear if PCFG grey whales incur an oxygen debt 

during subsequent foraging dives that then requires a longer surface interval (Castellini, 2012). 

Additionally, other focal follow studies have found no significant differences between surface 

period between different behavioural contexts (Mallonee, 1991). The uncertainty in the 

biological relevance of the surface recovery period led to its exclusion from the model.  

Dive tortuosity and change in heading both approximate the sinuosity of the animal’s 

path. Dive tortuosity has clearer breaks in the distribution, which should make it more helpful 

when classifying different broad states. Transiting dives are expected to have lower tortuosity as 

they represent directed movement, while foraging dives are expected to have higher tortuosity 

(Barraquand and Benhamou, 2008).  

The proportion of time spent in roll events during a dive is likely an indication of the 

foraging effort during a dive, given that foraging ecology studies have shown that grey whales 

roll on their sides to feed (Nerini, 1984; Torres et al., 2018; Woodward and Winn, 2006). The 

distribution of the proportion of dive time spent rolled is heavily skewed towards 0; when the 

dives with 0% of time spent rolled are excluded, the distribution is relatively uniform. Therefore, 
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an alternative metric indicating whether a roll event was present during a dive was used in the 

HMM. It is expected that only forage and search dives will have roll events present, as these roll 

events are associated with foraging behaviour.  

 

Figure A1. Histograms for the movement metrics summarized over each dive (n = 1,856) from ten CATS tag 

deployments on PCFG grey whales, representing potential data streams for the Hidden Markov Models 

(HMMs). Dive duration (a) is the time from dive start to dive end in seconds. Maximum depth (b) is the 

deepest depth in meters recorded during the dive. Surface recovery period (c) is the time in seconds spent at 

the surface after the dive is complete and before the next dive starts. The ratio of surface to dive time (d) is 

the surface recovery period of the dive divided by the dive duration. Dive tortuosity (e) is the ratio of actual 

distance traveled to the distance between the start and end points of the dive with a value of 0 corresponding 

to straight line movement and 1 corresponding to extremely circuitous movement. Change in heading (f) was 

calculated as the difference in heading between the start and end points of the dive. Percent of the dive spent 

in roll events (g) was used to indicate potential foraging and was zero-dominated so was also examined with 

the zero-values excluded (h).   
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Appendix B: Preliminary Hidden Markov Models including maximum depth 

In the initial attempt to classify forage, search, and transit behaviour using HMMs, all 

data streams included in existing cetacean HMMs (DeRuiter et al., 2017) were included in the 

PCFG grey whale models. Maximum depth showed a clear bimodal distribution and was thought 

to be helpful to distinguish between forage, search, and transit behaviours due to the benthic 

foraging ecology of grey whales (Nerini, 1984). However, further analysis showed that the 

models with maximum depth included, while identifying three states, failed to meet the objective 

of classifying forage, search and transit behaviours. The preliminary models with maximum 

depth are expanded upon here, while the final model without maximum depth is reported in the 

main text as it met the research objective.  

HMMs were constructed using turn angle (radians; von Mises distribution) dive duration 

(s; gamma distribution), maximum dive depth (m; gamma distribution), dive tortuosity (beta 

distribution), and presence of roll events (Bernoulli distribution) and compared between two- and 

three-states to attempt to define forage, search, and transit states in the dive data from 10 

biologging tag deployments of PCFG grey whales (n = 1,856 dives). The state-dependent 

distributions showed reduced variation in the three-state HMM, suggesting that three reasonably 

distinct and biologically significant states are present in PCFG dive behaviour (Table B1).   

State 1 showed a surface foraging behaviour (Figure B1). The dives classified as State 1 

were the shallowest and shortest dives, with intermediate turn angles and dive tortuosity. State 1 

dives had intermediate roll presence. This behaviour was likely linked to surface foraging on 

porcelain crab larvae (Darling et al., 1998) and was found in only one deployment (I22).  

State 2 indicated a benthic foraging behaviour (Figure B1). State 2 dives were the 

deepest and longest dives, and had the highest turn angles, although there is high variation in 

these data streams. State 2 dives also had the highest dive tortuosity and roll event presence. 

State 3 suggested a non-foraging transit behaviour (Figure B1). State 3 had the lowest 

turn angle, dive tortuosity, and roll event presence. State 3 had an intermediate dive duration and 

maximum dive depth compared to States 1 and 2.  

The transition probability matrix showed that a whale was mostly likely to remain in the 

current state (Table B2). State 1 surface foraging behaviour was least likely to be transitioned to 

from both State 2 benthic foraging behaviour and State 3 non-foraging transit behaviour. The 
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most likely transition from State 1 surface foraging behaviour was to State 2 benthic foraging 

behaviour.  

There was no search state found in the best HMM when maximum dive depth was 

included in the model. To determine if search behaviour could be classified in addition to the 

surface foraging behaviour, two other models were constructed. First, a four-state HMM was 

constructed to determine if the addition of another state would lead to search behaviour being 

recognized by the model. However, when a fourth state was added, the model still failed to 

isolate a search state. Second, the three-state HMM was reconstructed with the deployment (I22) 

removed to see if the three-state model with depth was able to classify a search behaviour when 

the known surface foraging behaviour was excluded from the input data. The model fit without 

the data from I22 failed to identify a third state. In other words, the state density distribution for 

the third state across all data streams was equal to zero. As a result, we excluded the maximum 

depth data stream in all subsequent models.    

 

Table B1. State-dependent distribution parameters of the data streams estimated by the Hidden Markov 

Model (HMM) for the three states included in the deployments of CATS tags on PCFG grey whales (n = 1,856 

dives). 

Data stream Distribution State Distribution parameters 

Turn angle (radians) von Mises 1 μ = -0.38; κ = 1.23 

  2 μ = 0.08; κ = 1.11 

  3 μ = -0.01; κ = 17.87 

Dive duration (s) gamma 1 μ = 37.5; σ = 24.4 

  2 μ = 169.8; σ = 88.2 

  3 μ = 102.1; σ = 48.4 

Maximum dive depth (m) gamma 1 μ = 2.11; σ = 0.84 

  2 μ = 11.24; σ = 3.86 

  3 μ =  7.08; σ = 3.69 

Dive tortuosity beta  1 α = 0.53; β = 5.40 

  2 α = 0.60; β = 1.39 

  3 α = 0.56; β = 126.48 

Roll presence Bernoulli 1 p = 0.96 

  2 p = 0.81 

    3 p = 0.01 
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Figure B1. Hidden Markov Model (HMM) state-dependent distributions for all dives (n = 1,856) recorded on 

CATS tag deployments on PCFG grey whales based on (a) turn angle, (b) dive tortuosity, (c) dive duration, 

(d) roll event presence, (e) dive depth. (f) Viterbi algorithm state assignments for one deployment’s 

pseudotrack. 

 

 

Table B2. Transition probability matrix for the three states estimated by the Hidden Markov Model (HMM) 

based on dives (n = 1,856) recored on CATS tag deployments on PCFG grey whales. Rows indicate the 

current state and columns indicate the proximate state.    

  State 1 State 2 State 3 

State 1 0.962 0.025 0.013 

State 2 0.005 0.912 0.083 

State 3 0.009 0.148 0.843 
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Appendix C: Preliminary two-state Hidden Markov Model 

A two-state HMM was constructed using turn angle (von Mises distribution), dive 

duration (s; gamma distribution), dive tortuosity (beta distribution), and presence of roll events 

(Bernoulli distribution) (Table C1) to compare to the three-state HMM with the same data 

streams reported on in the main text. State 1 was interpreted as non-foraging transit behaviour 

with low turn angle, dive tortuosity and low presence of roll events (Figure C1). Dive duration 

for State 1 was longer than State 2 on average, although with high variation. State 2 was 

interpreted as forage behaviour with higher turn angle, tortuosity, and roll presence. There was a 

lower probability of transitioning from State 2 forage behaviour to State 1 transit behaviour than 

from State 1 transit behaviour to State 2 forage behaviour (Table C2). Note the high variation in 

the state-dependent distributions (especially turn angle and dive duration), which was reduced 

when a three-state HMM was fitted as described in the main text of Chapter 2 (Figure 2), 

leading to a clearer distinction among the classified states. Moreover, the pseudo-residuals of the 

two-state model showed a greater deviation from normality compared to the three-state model 

(Figure C2).  

 

Table C1. State-dependent distribution parameters of the data streams estimated by the Hidden Markov 

Model (HMM) for the two states included in the deployments of CATS tags on PCFG grey whales (n = 1,856 

dives). 

Data stream Distribution State Distribution parameters 

Turn angle (radians) von Mises 1 μ = -0.00; κ = 26.88 

  2 μ = -0.03 κ = 1.12 

Dive duration (s) gamma 1 μ = 106.2; σ = 50.6 

  2 μ = 139.7; σ = 103.3 

Dive tortuosity beta  1 α = 0.60; β = 160.15 

  2 α = 0.51; β = 1.48 

Roll presence Bernoulli 1 p = 0.02 

    2 p = 0.83 
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Figure C1. Hidden Markov Model (HMM) state-dependent distributions for all dives (n = 1,856) recorded on 

CATS tags deployments on PCFG grey whales based on (a) turn angle, (b) dive tortuosity, (c) dive duration, 

and (d) roll event presence. (e) Viterbi algorithm state assignments for one deployment’s pseudotrack.  

 
 

 

Table C2. Transition probability matrix for the two states estimated by the Hidden Markov Model (HMM) 

based on dives (n = 1,856) recorded on CATS tag deployments on PCFG grey whales. Rows indicate the 

current state and columns indicate the proximate state.     

  State 1 State 2 

State 1 0.847 0.153 

State 2 0.063 0.937 
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Figure C2. Comparison of the pseudo-residuals for the two- (left) and three-state (right) Hidden Markov 

Models (HMMs) constructed using dives (n = 1,856) recorded on CATS tag deployments on PCFG grey 

whales based on turn angle, dive tortuosity, dive duration, and roll presence data streams. The observation 

index columns show the pseudo-residual values through all data points (n = 1,856 dives). The theoretical 

quantile columns show the pseudo-residual values (red dots) in relation to normal distribution (black line). A 

better fit model will have a smaller magnitude of pseudo-residuals more equally distributed above and below 

0 (observation index column) and a more normal distribution (theoretical quantiles column) of pseudo-

residuals (Zucchini et al., 2016).  
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Appendix D: Calculating relative speed  

The speed (m/s) derived from tag jiggle (Cade et al., 2021) was converted to a relative 

speed to compare between deployments. Relative speed was determined by choosing a minimum 

threshold for each deployment to act as a floor speed. The floor speed threshold was determined 

to be the halfway point between the minimum tag jiggle speed and the 1st quartile tag jiggle 

speed of the deployment. Values of tag jiggle speed higher than the floor speed were set to 1, 

indicating forward-moving foraging tactic, while values of tag jiggle speed less than or equal to 

the floor speed were set to 0 indicating a stationary foraging tactic.  
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Appendix E: Visual validation of foraging tactics  

A random subset of roll events was taken from the data set. Each of the randomly 

selected events was then viewed to define into a foraging tactic by using TrackPlot to visualize 

body orientation. TrackPlot is initially viewed from above (mirroring drone footage) and then 

can be viewed from the side to help aid in assigning a foraging tactic. Foraging tactics are from 

previously defined PCFG grey whale foraging behaviours (Table D1). Detailed descriptions for 

assigning each roll event to foraging tactic using the TrackPlot visual data are below.  

 

Table D1. Ethogram that can detect in tag data with body orientation variables. Behaviour names and 

definitions come from Torres et al. (2018). The benthic dig (e.g., side dig) behaviour is included in the 

headstand behaviour in Torres et al. (2018) but for the purpose of my analysis, will be kept separate to use to 

compare to the ‘traditional’ foraging tactic of Arctic feeding grey whales (Nerini, 1984). 

Behaviour  Definition 

Headstand Whale positioned head down-flukes up (or if in water depths less 

than whale body length (~12m) whale may be more horizontal in 

water column; with both body positions the whale is observed 

pushing head/mouth region into substrate 

Side swim (stationary) Whale observed swimming on its side, but not moving forward 

Side swim (forward) Whale observed swimming on its side, moving forward 

Benthic dig  Whale head is below the fluke, with the head/mouth region in the 

substrate; whale body position is more horizontal than a headstand, 

even in deep water 

Upside-down 

swimming 

Whale observed swimming upside down  

 

Headstand 

 If the whale is diving in deep water (> ~10m), from the top, the whale looks vertical with 

their fluke up in the air. This visual cue is more obvious in some deployments than others, given 

that different whales pitch themselves downwards in varying degrees.  

When the water is shallower, the whale is not able to be as vertical in the water column. 

However, the body angle should still look to be at least 45 degrees. The TrackPlot image can be 

rotated to check the whales body position in relation to the surface height of the dive start to 

confirm if there is more room in the water column for the whale to be more vertical. The whale’s 

pitch in these shallower water situations can be compared to the pitch of the dive descent/ascent. 

If the extremeness of the event’s pitch matches that of the descent/ascent, the whale is 
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headstanding (if the pitch of the whale decreases substantially from the descent/ascent body 

positioning, then the event is likely a benthic dig).  

Another hint of a headstand is if from above, the whale does not look to be extremely 

rolled (e.g., the dorsal side of the whale is still visible) as the whale is pitched in the water 

column.  

Unpublished drone data from C. Bird suggests the following about the headstand 

foraging tactic. Headstands are assumed to be just pitch and no roll, with a high pitch being the 

best indicator. Drone observations indicate a high fluke rate but variable. With shallower water 

and in kelp, the whale is trying not to move its head, the pitch can get more extreme (over 90 

degrees in some cases). It seems like when the whale is headstanding in shallower water, the 

whale’s roll is more variable when compared to headstands in deeper water.  

Benthic dig 

The most common indication of a benthic dig is when the whale looks as if it is 

positioned horizontally on its side when viewed from above, but upon rotating the TrackPlot 

frame to be viewed from the side, the whale has its head pitched down to the sediment. This 

pitch angle is less than 45 degrees, as a benthic dig does not have as extreme a pitch as a 

headstand.  

When watching the duration of the roll event, the whale must stay in this pitched position 

for the event to be classified as a benthic dig. If the pitch decreases to the point where the whale 

is horizontal, then the whale would be classified as side swimming.  

The whale stays clearly rolled on its side for the whole event duration.  

Unpublished drone data from C. Bird suggests the following about benthic digs. The 

traditional benthic feeding where the whale is thought to be dragging its head, and suctioning the 

2m pit as it is moving. The tactic is thought to be a pitch and roll combination, with less extreme 

pitch than the headstands (about half the pitch angle) and higher, more variable roll. Headstands 

might look like benthic digs in some cases, and therefore habitat is used to differentiate as 

headstands usually occur along rocky reefs while benthic digs occur in sandy bottom areas. 

Benthic digs also seem to be longer than headstands from drone observations.  
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Side swim (stationary & forward) 

This is when the whale is swimming on their side. In the TrackPlot, the whale looks 

horizontal from above, and from the side does not have the head pitched down into the sediment. 

Whales are classified as side swimming as long as the head only dips down occasionally such 

that it appears that the whale is stretching to keep its mouth in a dense prey patch.  

Unpublished drone data from C. Bird suggests the following about the side swim 

foraging tactic. Side swims are periods of high roll and no pitch, where the whale will sometimes 

swim upside-down between side swim events. The roll is stable throughout the event while pitch 

can have cyclic variation as it will vary by the habitat the whale is side swimming through. Side 

swims tend to be as deep as the water column and are possible in shallower waters than 

headstand and benthic dig tactics. Stationary side swims would be expected to have higher fluke 

rate and amplitude as well as higher jerk due to vigorous pectoral sculling from drone 

observations while forward side swimming looks smoother and more graceful than the stationary 

side swims.  

What to do when multiple tactics appear in a single roll event 

If multiple foraging tactics appear in a single roll event, note how long each tactic occurs 

during an event, and then select the tactic that occurs for the longest time. If foraging tactics 

occur for relatively the same amount of time during the event, both tactics are assigned (e.g., 

headstand/benthic dig) with the one of higher probability first and make a note explaining my 

reasoning in the notes section. Roll events with multiple tactics assigned are excluded from the 

data used to construct the CART model.   
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Appendix F: Summary metrics to include in classification tree model 

Summary metrics of roll events were examined between different foraging tactics that 

had been visually validated using the TrackPlot (Figure F1). Only the metrics that were able to 

clearly differentiate between tactics were included in the Classification and Regression Tree 

(CART) model. The summary metrics with the clearest breaks between foraging tactics were the 

absolute value of the median roll, median pitch, and the depth to body length ratio. Headstands 

vary between 25o and 75o roll, -80o and -30o pitch, and depth to body length ratio of 0.75-1. 

Benthic digs vary between 75o and 140o roll, -40o and -10o pitch, and depth to body length ratio 

of 0.75-1.5. Side swims vary between 80o and 140o roll, -10o and 10o pitch, and depth to body 

length ratio of 0-0.75. Change in heading, and speed metrics showed too much overlap to be 

useful for distinguishing between foraging tactics.        
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Figure F1. Distributions of each summary metric for foraging tactics from ten CATS tag deployments on 

PCFG grey whales (n = 1,890 roll events). Event duration (a) is the time in seconds from the start to the end 

of the roll event. Maximum depth (b) is the deepest depth in meters measured during the roll event. The 

depth to body length ratio (c) divides the depth of the animal from the CATS tag by the length of the animal 

from drone photogrammetry. The absolute value of the median roll (d) is the degree to which the animal is 

rolled onto its side during the roll event. The ratio of the absolute value of the median roll to the maximum 

roll (e) indicates the variability of the roll during the roll event, with values closer to one showing less 

difference between the median and the maximum roll. Median pitch (f) shows the degree to which the animal 
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was vertical in the water column, with a more extreme negative pitch indicating that the whale is more 

vertical in a head down-fluke up position. The change in heading (g) is the degree of change between the start 

and end of the roll event. Relative speed (h) shows if the animal was moving forward (1) or was stationary (0) 

while performing the foraging tactic.  
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Appendix G: Dominant stroking frequencies and median Overall Dynamic Body 

Accelerations 

Table G1. Dominant stroking frequencies (dsf) and complementary filters from CATS tag deployments on 

PCFG grey whales. Dsf were calculated on steady swimming bouts in each deployment. Complimentary 

filters were used when calculating Overall Dynamic Body Acceleration (ODBA; ms-2). Mean and standard 

deviation (n = 10 deployments) of the dsf and each filter are reported in the last two rows of the table.  

 

Deployment 

 

Dsf 

Filter 

25% 

dsf 

50% 

dsf 

70% 

dsf 

A19 0.20 0.05 0.10 0.14 

B21 0.07 0.02 0.04 0.05 

C21 0.07 0.02 0.04 0.05 

D21 0.38 0.09 0.19 0.26 

E22 0.18 0.04 0.09 0.13 

F22 0.08 0.02 0.04 0.06 

G22 0.08 0.02 0.04 0.06 

H22 0.28 0.07 0.14 0.20 

I22 0.18 0.04 0.09 0.13 

J22 0.06 0.01 0.03 0.04 

Median 0.13    

Mean 0.16 0.04 0.08 0.11 

s.d. 0.10 0.03 0.05 0.07 

 

Table G2. Median Overall Dynamic Body Acceleration (ODBA; ms-2) from CATS tag deployments on PCFG 

grey whales used to calculate standardized ODBA. Standardization method follows that of (Isojunno and 

Miller, 2015).  

Deployment 

Median ODBA 

25% dsf 50% dsf 70% dsf 

All 1.13 0.76 0.61 

A19 0.90 0.69 0.57 

B21 1.24 0.94 0.83 

C21 1.60 1.12 0.92 

D21 0.47 0.27 0.22 

E22 1.05 0.67 0.49 

F22 1.57 1.12 0.93 

G22 1.20 0.80 0.65 

H22 1.04 0.71 0.49 

I22 1.05 0.74 0.61 

J22 1.70 1.22 0.99 
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Appendix H: Covariate analysis shortcomings 

The morphology of an individual affects its behaviour (Beale & Monaghan, 2004; Bird et 

al. in prep). Therefore, body length (m) and body area index (BAI) are thought to be important 

variables affecting PCFG foraging behaviour, because length is an indicator of individual age 

and BAI is an indicator of body condition. Whale length and BAI were calculated from drone 

video footage collected during field tagging efforts or within 15 days of the tagging date 

according to previously established field methods (see Chapter 3). 

We considered using body length (m) and Body Area Index (BAI) as co-variates for the 

proxies of the energetic cost of different behaviours in PCFG grey whales. However, Overall 

Dynamic Body Acceleration (ODBA; ms-2) and stroke rate (Hz) had to be standardized to 

account for tag placement and body length, and stroke amplitude could only be compared within 

a deployment due to its dependence on tag placement and lack of an appropriate standardization 

method. The standardization method for ODBA adjusted the ODBA values for each deployment 

so that all 10 deployments had the same median ODBA , and thus making it impossible to detect 

variation in ODBA due to differences in length and BAI, the latter of which is calculated using 

body length (Figure H1a,b). Further consideration was given to the impact of the deployment 

duration on the ODBA values for each deployment. However, deployment duration did not 

impact this energy expenditure proxy (Figure H1c). Stroke rate is known to have a negative 

relationship to body length (Gough et al., 2021; Sato et al., 2007) and was standardized to 

explicitly remove the effect of morphology on this energy expenditure metric.  

Additionally, the small sample size of individual deployments in the study means we 

have not captured the full body length and BAI spectrum of the PCFG grey whale population. 

This further limits this study’s ability to detect an effect of morphology on the energetic cost of 

behaviours. Therefore, while the effects of body length and BAI could not be explicitly analyzed, 

differences in the relative energetic cost of behaviours between individuals, which likely include 

residual effects of differences in morphology, were examined in the results and summarized in 

the main text. 
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Figure H1. Standardized Overall Dynamic Body Acceleration (ODBA; ms-2) of deployment for each whale 

compared to body length (m; a), body area index (BAI; b), and deployment duration (s; c). Note that y-axes of 

all panels were adjusted from a maximum value of 20.0 to 10.0 to better see the box of the box and whisker 

plot. The standardized ODBA for each deployment has the same median given the standardization method of 

(Isojunno and Miller, 2015). One deployment A19 does not have a BAI measurement from within 15 days of 

the tagging date and therefore was given a BAI of NA in panel b. Each deployment has many high-value 

outliers, additionally in the range of values between 10.0 and 20.0 that were excluded from the figure.  


