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Abstract 

Harbour seals have long been perceived to compete with fisheries for economically valuable fish 

resources in the Pacific Northwest, but assessing the amounts of fish consumed by seals requires 

estimates of harbour seal diets. Unfortunately, traditional diet analysis techniques cannot provide 

the necessary information to estimate the species, life stage, and biomass of key prey (e.g. 

salmonids) consumed by seals. I therefore developed a new harbour seal diet analysis 

methodology, using scat DNA metabarcoding and prey hard-part analysis to create refined 

estimates of salmon in harbour seal diet. I also sought to understand the quantitative potential of 

DNA metabarcoding diet analysis (i.e. the relationship between prey biomass proportions and 

DNA sequence percentages produced by high-throughput amplicon sequencing of seal scat 

DNA).  

Analysis of faecal samples (scats) from captive harbour seals fed a constant diet indicated that a 

wide range of factors influence the numbers of prey sequences resulting from scat amplicon 

sequencing. These biases ranged from preferential amplification of certain prey species DNA, to 

sequence quality filtering—in addition to interactions between the various biases. I was able to 

apply correction factors derived from tissue mixtures of the species fed to captive seals that 

improved prey biomass estimates from DNA, and found that the lipid content of prey fish species 

perfectly predicted the magnitude of bias resulting from differential prey digestion. My results 

suggest that highly accurate pinniped prey biomass estimates can be attained by applying two 

stages of corrections to prey DNA sequence counts. However applying these corrections to the 

scats of wild seals is challenging, and requires a complete prey tissue mix library to create 

species-specific correction factors for all prey. While I established an approach that could be 

applied to wild seals, a thorough statistical evaluation and follow-up feeding studies are needed 

to determine if the additional effort is justified for population level diet estimates. Lastly, I 

developed a decision tree approach for merging salmon DNA and hardparts data from seal scats 

to determine the species and life stages of salmon consumed by seals in the Strait of Georgia, 

British Columbia.  



iii 

 

Preface 

All four data chapters in this thesis are the product of a collaborative effort with other 

researchers, including scientists at the Australian Antarctic Division, the Washington Department 

of Fish and Wildlife, Point Defiance Zoo and Aquarium, CSIRO Marine and Atmospheric 

Research, and the University of British Columbia. While I acknowledge the contributions of all 

my coauthors, I would like to specifically mention the contributions of Dr. Bruce Deagle to my 

thesis, who contributed substantially to my research by assisting with study designs, data 

analysis, and the writing of Chapter 2. Two of the four chapters written as manuscripts have been 

published in peer-reviewed journals (see below), and the other two are in preparation for 

submission. 

Chapter 2. The feeding trial in this chapter was done with collaborators at the Point Defiance 

Zoo and Aquarium, based on a study design created by Dr. Deagle and myself. I was responsible 

for the sample processing of harbour seal scat samples and the laboratory analysis of Run 1. I 

also performed the majority of the data analysis and writing for the first draft manuscript created 

from the study. After several rounds of peer review, it became clear that additional analyses were 

needed (including a second sequencing run) to complete the publication, at which point Dr. 

Deagle took the lead on analyses of the new data. The final accepted publication, which appears 

in this thesis as Chapter 2, includes both Dr. Deagle and me as the shared primary authors. Dr. 

Simon Jarman facilitated the work at the AAD and provided manuscript edits. Amanda Shaffer 

was the primary contact at Point Defiance and coordinated scat collections from the captive 

seals. For all chapters Dr. Andrew Trites provided manuscript edits and guidance on study 

designs. This chapter was published in Molecular Ecology Resources in 2013: 

 Deagle BE*, Thomas AC*, Shaffer AK, Trites AW, Jarman SN (2013) Quantifying 

sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: 

which counts count? Molecular Ecology Resources 13:620-633. [* These authors 

contributed equally to the study]. 

Chapter 3. This study developed during the peer review process of my Chapter 2 manuscript, 

after subsequent analyses of the feeding trial data from the Point Defiance harbour seal scats. 

The study design, laboratory processing, data analysis and writing of the Chapter 3 manuscript 
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were primarily done by me, with significant input from Dr. Deagle. Additionally, Dr. Simon 

Jarman facilitated the sequencing work at the Australian Antarctic Division and provided 

manuscript edits. Dr. Katherine Haman contributed conceptual feedback and data interpretation 

with respect to digestive physiology. An external laboratory (SGS Canada Inc.) performed the 

proximate composition analysis of seal prey fishes. This chapter was published in a special 

edition of Molecular Ecology in 2014: 

 Thomas AC, Jarman SN, Haman KH, Trites AW, Deagle BE (2014) Improving accuracy 

of DNA diet estimates using food tissue control materials and an evaluation of proxies for 

digestion bias. Molecular Ecology 23:3706-3718 

Chapter 4. The study design for Chapter 4 was primarily created by me, with input from Dr. 

Deagle and Dr. Trites. Assistance in the lab was provided by an undergraduate student, Corie 

Wilson, who graciously spent many hours grinding up fish tissues with me at the UBC Fisheries 

Centre. I coordinated the molecular sample processing in two external genetics labs (Laboratory 

for Advanced Genome Analysis, and the UGA Georgia Genomics facility) using protocols 

adapted from my work with the Australian research group. The manuscript that I wrote from this 

study also went through several major rounds of revision before taking its final form. Paige 

Eveson, a statistician at CSIRO, played an integral role in the revision of the manuscript and 

produced the mathematical expressions contained in the text of the document. All writing and 

bioinformatic analyses were done by me, with edits and revisions provided by Dr. Deagle and 

Dr. Trites. This chapter manuscript is in the final stages of preparation and has not yet been 

submitted for peer review. 

Chapter 5. Countless hours went into the harbour seal scat collections for this study (~120 

collection trips), and would not have been possible without the help of numerous volunteers who 

assisted me in the field. I did the bulk of the laboratory processing of the scat samples 

(preparation for molecular and prey bone analysis), with intermittent assistance from 

undergraduate volunteers. Monique Lance at the Washington Department of Fish and Wildlife 

performed the morphological identification of prey remains in the seal scat samples – a massive 

undertaking in itself. Similar to Chapter 4, the molecular wet lab work was subcontracted to an 

outside laboratory, but all work was directly supervised by me, and done using a protocol that I 
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developed for MiSeq sequencing of scat DNA. I performed all bioinformatic and statistical 

analyses for the study, with some coding assistance provided by Ilai Karen and Alistair 

Blachford. My fellow PhD student Benjamin Nelson contributed conceptual feedback on the 

decision tree used to merge data from DNA and prey bone analyses. The writing of the 

manuscript was done entirely by me, with edits provided by Dr. Bruce Deagle, Dr. Andrew 

Trites, and Dr. Marc Trudel. Similar to Chapter 4, the manuscript created from this chapter is 

currently in the final stages of revision and has not yet been submitted for peer review. 

Animal care and ethics oversight of all research contained herein was administered by the UBC 

Animal Care Committee under permit # A11-0072. I successfully completed the ethics training 

requirements of the Canadian Council on Animal Care (CCAC) / National Institutional Animal 

User Training (NIAUT) Program (Certificate # 4620-11). In addition, all observations of wild 

harbour seals and collection of seal faeces were done under a Department of Fisheries and 

Oceans License to Study Marine Mammals for Research Purposes (Permit # MML-2011-10).  
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Chapter 1: General introduction 

 

1.1 The need for quantitative harbour seal diet information 

It is reasonable to assume that as long as humans have observed harbour seals feeding on 

adult salmonids at the water’s surface or depredating fishing gear, people have questioned how 

many salmon are eaten by harbour seal populations (Lavigne 2003). In 1931, Scheffer and 

Sperry wrote of harbour seals in Washington State, “they will rob set nets and have been known 

to enter a fish trap, dine on salmon, and escape the way they came in...bringing them into 

disfavor with fishermen” (Scheffer and Sperry 1931). Similar statements are made by salmon 

fishermen to this day, and likewise by people in all locations where predators are thought to 

compete with humans for a common resource.  

In the absence of quantitative harbour seal diet information, observations of harbour seals 

preying upon salmonids has led to the perception that harbour seals consume large numbers of 

economically valuable fish. That perception resulted in the establishment of a seal population 

control program that dates back to 1914 in British Columbia, Canada, wherein hunters were 

rewarded for turning in the noses of dead harbour seals (Fisher 1952; Olesiuk 2009). Fisheries 

managers in the Pacific Northwest have been concerned about the predatory impacts of harbour 

seals for over a century, and have responded in the past to public perception of a conflict 

between seals and salmon fisheries with dramatic management policies (Jeffries et al. 2003; 

Olesiuk 2009). 

More recently, fisheries managers have relied on data, as opposed to perceptions, to 

inform management actions (Anonymous 1999; Lavigne 2003; Bowen and Lidgard 2013). For 

example, if active management of harbour seal populations is deemed necessary in the present 

day, it must first be proven by fisheries scientists that seals have a significant negative impact on 

fisheries resources (Anonymous 1999). Demonstration of an impact generally involves an 

estimate of the numbers of prey consumed by the pinniped population, and an evaluation of seal-

related mortality relative to the prey population abundance and other sources of mortality. 

Furthermore, simulation modeling should be used to demonstrate that active management of seal 

populations has a relatively high probability of increasing the availability of the targeted fisheries 
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resource to fishers, accounting for potentially complex ecosystem interactions (Punt and 

Butterworth 1995; Lessard et al. 2005; Li et al. 2010).  

A fundamental component of most pinniped impact assessments is an evaluation of the 

pinniped population diet (Bowen and Iverson 2013). Fisheries researchers combine diet estimates 

with information about the numerical abundances of the predator species, and the daily energy 

requirements of the species, in order to estimate the numbers of individual prey consumed 

(Smith et al. 2014). This general framework for creating prey consumption estimates has been 

used to estimate the numbers of prey consumed by a variety of marine mammals, including 

cetaceans (Lindstrøm 2002), many pinniped species (Ugland et al. 1993; Hammill and Stenson 

2000; Winship and Trites 2003), and harbour seals specifically (Olesiuk 1993; Howard et al. 

2013). 

The accuracy of pinniped consumption estimates is therefore highly influenced by the 

accuracy of the methodology used to describe pinniped diet. Without accurate diet information 

for the predator suspected of impacting a fishery, it is difficult to assess whether or not that 

predator population is in fact influencing fisheries resources. Furthermore, in addition to 

numerical accuracy, predator diet information needs to be spatially and temporally appropriate 

(i.e. specific to the region and time period of interest) to effectively address resource conflict 

questions. 

 

1.2 Methods used to characterize pinniped diets 

Numerous methods have been used characterize the diets of seals, and each method has 

clear advantages and disadvantages over the alternatives. Marine mammal diet characterization 

methods have been thoroughly reviewed previously, and the authors have carefully catalogued 

the potential biases associated with each available approach (Tollit et al. 2010; Bowen and 

Iverson 2013). My aim is therefore not to repeat their efforts and provide an exhaustive review of 

diet methods, but rather to highlight the evolution of pinniped diet analysis techniques and the 

rationale for pursuing yet additional alternatives.  

The first approach used to characterize the diets of pinnipeds was an analysis of the 

stomach contents of lethally harvested animals, which involves identifying prey remains in 
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various stages of digestion, and volumetric analysis of those remains to estimate the relative 

proportions of prey in the predator diet (Scheffer and Sperry 1931; Scheffer and Slipp 1944; 

Pierce et al. 1989). To this day, stomach contents analysis is arguably the most superior seal diet 

analysis technique in terms of the data it can provide, but it has several major disadvantages that 

have resulted in it being a less popular research tool (Tollit et al. 2010). The primary 

disadvantage being that it requires seals to be killed to provide diet data, or reliance on dead-

stranded animals which may strongly bias population diet estimates. Furthermore, a high 

percentage of seal stomachs are empty at the time of harvest, meaning that large numbers of 

seals must be killed on multiple occasions to generate a sufficient sample size for seasonal 

population diet summaries. 

To reduce the impact of diet studies on pinniped populations, researchers turned to the 

analysis of seal faecal samples (scats) to characterize population diets (Putman 1984; Dellinger 

and Trillmich 1988). Hard prey remains such as fish otoliths recovered from scat samples can be 

used to determine the prey taxa consumed, and large numbers of scat samples can be collected 

with minimal disturbance to the pinniped population of interest (Olesiuk et al. 1990). An entire 

subfield of marine mammal science is now dedicated to the methods involved in the 

reconstruction of pinniped diets from hard prey remains (Cottrell et al. 1996; Tollit et al. 1997b; 

Tollit et al. 2004; Tollit et al. 2007; Phillips and Harvey 2009).  

This subfield developed because numerous factors are known to influence diet summaries 

based on prey hard parts in scats; such as the differential passage of prey structures between diet 

species (Cottrell et al. 1996), erosion of hard prey remains during digestion that prevents 

identification or measurement (Tollit et al. 2004), and selective consumption of prey tissues by 

seals that does not include hard structures (e.g. “belly biting”) (Hauser et al. 2008). In addition to 

these biases, the mathematical model used to calculate the population diet can also strongly 

influence diet estimates, depending on whether it is based on prey biomass reconstruction or a 

modified frequency of occurrence. One evaluation of diet methods suggested that the choice of 

diet summary metric can lead to an order of magnitude difference in prey species composition of 

seal diet (Laake et al. 2002). Taxonomic resolution of prey is also a challenge for hard-parts 

methods, with some species structures only being identifiable to the family level (e.g. 

Salmonidae).  
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After decades of pinniped diet work focused on morphological hard-parts analysis, 

several recent alternative approaches have emerged for diet characterization (Bowen and Iverson 

2013). For example, stable isotope signatures detected from pinniped blood or tissue samples can 

be used to infer shifts in diet over multiple time scales, and have been applied to identify 

important changes in diet associated with life history events for these predators (Germain et al. 

2012; Beltran et al. 2015). Stable isotope diet analysis however suffers from low taxonomic 

resolution, and most studies are limited to general descriptions of the trophic level at which the 

predator feeds (Post 2002; Ben-David and Flaherty 2012). Despite this limitation, stable isotope 

analysis continues to be a popular tool among biologists studying the trophic ecology of 

pinnipeds (Hobson et al. 1997; Lesage et al. 2001; Zhao et al. 2004; Newsome et al. 2010). 

Trophic ecologists have also shown considerable enthusiasm for methods involving diet 

descriptions based on fatty acid signatures in animal blubber, milk and blood (Budge et al. 

2006). Fatty acids found in animal samples can be related to those contained in potential prey 

species, and a statistical model can be applied to infer the most probable diet of the predator 

based on possible combinations of the prey species fatty acid signatures (Iverson et al. 2004; 

Tollit et al. 2010). Quantitative Fatty Acid Signature Analysis (QFASA) has been used to 

characterize the diets of multiple marine mammal species, and has the advantage of high 

taxonomic resolution over relatively long time scales — thereby identifying those prey species 

that are consistently important for the predator, as opposed to ephemeral prey species simply 

present at the time of sampling. Although QFASA was once considered a potential “silver 

bullet” for marine mammal trophic ecology, subsequent methodological evaluations have shown 

that diet estimates can be highly sensitive to variability in prey species fatty acid signatures 

(Nordstrom et al. 2008). This has led to caution among researchers about the interpretation of 

diet results produced by QFASA analysis (Grahl-Nielsen 2009; Thiemann et al. 2009). 

 

1.3 DNA-based pinniped diet analysis 

Genetic analysis of pinniped scat samples or “molecular scatology” is currently one of 

the most promising approaches for characterizing pinniped diets (Deagle et al. 2005; Pompanon 

et al. 2012; Clare 2014). DNA based diet methods are highly sensitive (offering a high 



5 

 

probability of prey species detection), in addition to providing refined taxonomic assignment of 

prey when assays are designed appropriately. Similar to the evolution of pinniped diet analysis as 

a whole, DNA based diet analysis methods have also evolved substantially over time.  

The first pinniped diet studies to employ DNA focused on improving the taxonomic 

resolution of standard hard-parts techniques by extracting DNA from fish bones that could only 

be identified to the family level (e.g. salmonids) (Purcell et al. 2000). Species level identification 

was enabled using a Polymerase Chain Reaction (PCR) based assay targeting salmon 

mitochondrial DNA markers, followed by DNA sequencing of the products or a Restriction 

Fragment Length Polymorphism (RFLP) analysis to identify species (Purcell et al. 2004). 

Follow-up studies also using salmon bones targeted alternative molecular markers and different 

salmon species (Kvitrud et al. 2005; Parsons et al. 2005). 

Subsequent genetic diet analysis of pinnipeds has focused on expanding the range of diet 

species that can be identified with DNA (using the scat “matrix” and bones), in addition to 

exploring the potential quantitative capabilities of DNA-based methods. Around this point in the 

evolution of DNA-based diet analysis, the idea of “DNA barcoding” as a means of species 

identification began to take hold, and gave rise to the Barcode of Life project (Hebert et al. 

2003). DNA barcoding works on the idea that all animals can be identified based on the DNA 

sequences of standardized diagnostic genetic markers, similar to the way a supermarket scanner 

identifies items using standardized black and white barcodes. Trophic ecologists were quick to 

adopt the idea of using standard diagnostic markers to identify prey species in diet samples, 

benefiting from a worldwide effort to produce reference databases of species DNA sequences for 

barcoding purposes (Jarman et al. 2004). 

Where DNA barcoding studies mostly seek to identify individual organisms, DNA diet 

analysis usually requires multiple species to be identified from a single diet sample in which the 

DNA of multiple food items is present. The latter has been termed “DNA metabarcoding”, i.e. 

the simultaneous identification of DNA from multiple organisms in a metasample using standard 

DNA barcoding markers (Taberlet et al. 2012a). Alternative terminology has been used in the 

past to describe this type of analysis, and because this term was introduced during the 
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development of my thesis, I have also used other terms such as “amplicon sequencing diet 

analysis” and “high-throughput sequencing diet analysis” to describe this approach. 

The typical DNA metabarcoding diet study today involves PCR amplification of food 

species DNA using group-specific primer sets (the target fragment of which provides sufficient 

sequence variation to identify food species), followed by high-throughput amplicon sequencing 

(a.k.a. next-generation DNA sequencing) (Pompanon et al. 2012). DNA sequences of the target 

fragment are then compared to a reference database of species barcodes to determine the food 

species present in the diet sample. Similar approaches utilizing clone libraries and Sanger 

sequencing, or Denaturing Gradient Gel Electrophoresis (DGGE) were also employed prior to 

the widespread availability of high-throughput DNA sequencers (Deagle et al. 2005; Tollit et al. 

2009). 

Up to this point I have focused on the simple idea of species detection (presence or 

absence) of pinniped prey in dietary samples. Presence/absence based models used by ecologists 

to estimate the relative biomasses of species consumed by predators have well documented 

biases; often overestimating species consumed in low biomass proportion and underestimating 

species eaten in large proportion. Several authors have explored the idea of using quantitative 

analysis of prey DNA in pinniped scats to better estimate the biomass proportions of the species 

consumed. For example, if a direct relationship exists between the relative amount of herring 

DNA in a seal scat and the proportional biomass of herring consumed by the seal, a quantitative 

DNA approach could have the potential to dramatically improve the accuracy of pinniped diet 

estimates.  

Two quantitative DNA approaches have been used with scat DNA to estimate the 

biomasses of prey consumed by pinnipeds. The first method being real-time or quantitative PCR 

(qPCR) targeting specific prey species of animals fed a known diet in a captive setting (Deagle 

and Tollit 2007; Bowles et al. 2011), and with samples from wild animals (Matejusová et al. 

2008). This approach requires species-specific primers and probes to be developed for all 

potential prey, and uses standard curves to estimate the amounts of different prey species DNA 

in a sample relative to other prey. The second quantitative approach involves DNA 

metabarcoding with group-specific primers, using the percentages of DNA sequences assigned to 

different prey as a proxy for the relative biomass of prey consumed. This approach has been used 
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with multiple pinniped species, and amplicon sequences were generated either by clone library or 

with high-throughput DNA sequencers (Deagle et al. 2005; Deagle et al. 2009). 

Captive feeding trials with sea lions using qPCR to quantify sea lion prey indicated that 

prey species DNA proportions are relatively consistent among samples when animals were fed 

the same diet. This implies that some relationship exists between prey species DNA % and the 

biomass % of prey consumed (Deagle and Tollit 2007; Bowles et al. 2011). However, the prey 

species DNA percentages from scats did not match the diet biomass proportions, nor did they 

match the species DNA percentages of a tissue mixture created to mimic the diet of the captive 

sea lions (Deagle and Tollit 2007). These results suggested that there may be prey species-

specific biases in scat DNA percentages introduced by differential prey digestion, and by 

differences in target mitochondrial gene copy number (i.e. variability in the amount of template 

DNA in the tissues of different prey species).  

One captive feeding study attempted to compensate for copy number differences by 

creating correction factors for the ratio of genomic DNA to mitochondrial DNA in different prey 

species (Bowles et al. 2011). Numerical correction factors are also routinely employed in 

pinniped diet studies using hard parts techniques. Corrections did improve biomass estimates 

based on DNA %, but differential prey species digestion was not addressed, and the results were 

limited to qPCR studies. DNA metabarcoding approaches are much more flexible than qPCR 

(easily detecting many potential prey species without extensive primer design) but are subject to 

other potential biases such as difference in primer binding efficiency between species, and 

bioinformatic filtering biases. 

This foregoing was the state of the field when I began my thesis research. DNA 

metabarcoding diet analysis using high-throughput DNA sequencing was a new technique with 

exciting potential, and the ability to rapidly produce vast quantities of taxonomic data from 

pinniped scats was unprecedented. Overshadowed by the excitement about the technique’s 

potential to estimate prey biomass from DNA sequence percentages, was the knowledge that 

those percentages are subject to many biasing factors that could potentially influence results. 

Therefore I began this work under the perception that the methodological evaluation period 

would be brief, and would be followed by extensive study of the foraging behaviors of harbour 

seals in the Strait of Georgia, British Columbia. However, the methods portion of my research 
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was not brief, and my efforts followed a lengthy chain of logic in the pursuit of a metaphorical 

carrot — the notion that accurate seal prey biomass percentages can be obtained using prey DNA 

sequence percentages produced by scat DNA metabarcoding. 

 

1.4 Outline of thesis data chapters 

My thesis consists of four data chapters (Chapters 2-5), each written as a standalone manuscript: 

Chapter 2. The first data chapter evaluates the potential biasing factors in DNA metabarcoding 

diet studies with pinnipeds. The factors evaluated range from the biases introduced by short 

DNA sequences attached to PCR primers used to identify individual samples (primer tags), to 

biases caused by bioinformatic sequence filtering, and several other biasing factors. The work 

stemmed from an in-depth evaluation of the DNA sequences produced from harbour seal scat 

samples collected in a captive feeding study at the Point Defiance Zoo and Aquarium. Two 

different high throughput sequencing runs were done for the study to a) confirm the sequencing 

results from the first run, and b) disentangle the biasing influences of the different factors 

evaluated. 

Chapter 3. This follow-up study to Chapter 2 contains my initial efforts to devise methods for 

correcting seal scat DNA sequence percentages for the various sources of bias, so that they better 

represent the biomass percentages of fishes consumed. Working again with the seal scats 

produced in the Point Defiance Zoo feeding trial, I tested the applicability of correction factors 

based on a fish tissue mix that matched the diet of the seals. I also used proximate composition 

analysis of the prey fishes to determine if some compositional property of the prey (e.g. lipid %, 

protein %, etc.) could be used as a proxy for the bias introduced by differential prey digestion. I 

conclude by postulating how the lessons learned from the study could be applied to scats of wild 

harbour seals. 

Chapter 4. In this chapter, I explored a promising method to apply tissue-based correction 

factors to samples of unknown composition, such as those collected in a wild harbour seal diet 

study. Using the approach suggested in Chapter 3, I tested the feasibility of a prey tissue library 

of two-species mixtures, wherein one of the two fish species is varied and other fish species is 

held constant. This approach is based on the idea that by holding one of the two fish species 
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constant in all mixtures, species specific bias can be inferred based on the variability in DNA 

sequences % between mixtures. Furthermore, the prey species biases calculated from these 

mixtures can be used to create correction factors for DNA sequence counts in DNA 

metabarcoding diet studies. I created a model study system to test the effectiveness of this idea, 

in addition to applying 50/50 tissue correction factors to scats of wild harbour seals, based on the 

results of a small harbour seal prey library.  

Chapter 5. My final data chapter contains an analysis of over 1,000 harbour seal scat samples 

collected from estuary seal haulout sites in the Strait of Georgia, British Columbia between 2012 

and 2013. In the study, I developed a new method for merging scat DNA information with data 

from traditional prey bone analysis to determine the species and age class (juvenile or adult) of 

salmon consumed by harbour seals. I combined data from hundreds of scats to describe seal 

population diet trends, and then compared it to diet data from the 1980s to detect potential 

changes in the ecological role of harbour seals in the Strait. The primary goal of this study was to 

produce diet information for harbour seals that can be used to estimate the numbers of juvenile 

salmon consumed by harbour seals in the region. To my knowledge, the scatological approach 

detailed in this study is the first to provide information sufficient to create pinniped consumption 

estimates for salmon that are specific to salmon species and life stage. 
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Chapter 2: Quantifying sequence proportions in a DNA-based diet study 

using Ion Torrent amplicon sequencing: which counts count? 

 

2.1 Summary 

A goal of many environmental DNA barcoding studies is to infer quantitative information about 

relative abundances of different taxa based on sequence read proportions generated by high 

throughput sequencing. However, potential biases associated with this approach are only 

beginning to be examined. We sequenced DNA amplified from faeces (scats) of captive harbour 

seals (Phoca vitulina) to investigate if sequence counts could be used to quantify the seals’ diet. 

Seals were fed fish in fixed proportions, a chordate-specific mitochondrial 16S marker was 

amplified from scat DNA and amplicons sequenced using an Ion Torrent PGMTM. For a given set 

of bioinformatic parameters there was generally low variability among scat samples in 

proportions of prey species sequences recovered. However, proportions varied substantially 

depending on sequencing direction, level of quality filtering (due to differences in sequence 

quality between species), and minimum read length considered. Short primer tags used to 

identify individual samples also influenced species proportions. In addition there were complex 

interactions between factors; for example, the effect of quality filtering was influenced by the 

primer tag and sequencing direction. Re-sequencing of a subset of samples revealed some, but 

not all, biases were consistent between runs. Less stringent data filtering (based on quality scores 

or read length) generally produced more consistent proportional data, but overall proportions of 

sequences were very different than dietary mass proportions indicating additional technical or 

biological biases are present. Our findings highlight that quantitative interpretations of sequence 

proportions generated via high throughput sequencing will require careful experimental design 

and thoughtful data analysis. 

 

2.2 Introduction 

The advent of high-throughput sequencing methods allows genetic markers to be characterized at 

an unprecedented scale, and has greatly enhanced the scope of studies using DNA-based 

identification methods (Valentini et al. 2009b). One area of particular interest is analysis of 

species diversity in environmental samples via recovery of many taxonomically informative 



11 

 

sequences from DNA mixtures. High-throughput sequencing was initially applied in ecological 

studies to characterize microbial taxa (e.g. Sogin et al. 2006), but has been extended into the 

realm of eukaryotic organisms including studies focused on microscopic eukaryotes (e.g. 

Porazinska et al. 2009; Bik et al. 2012), soil fungal communities (e.g. Buée et al. 2009), 

diversity of invertebrate or vertebrate populations (e.g. Hajibabaei et al. 2011; Andersen et al. 

2012), and food species in diets of herbivores and carnivores (e.g. Deagle et al. 2009; Valentini 

et al. 2009a). These studies used PCR to amplify a variety of different markers and often 

employed molecular tagging techniques to distinguish between different strata or individual 

samples in order to take advantage of the large amount of data produced by each high-throughput 

sequencing run (e.g. Meyer et al. 2007). This enables the analysis of dozens of environmental 

samples in parallel, and hundreds or thousands of sequences can be recovered from each to 

provide a profusion of data about species diversity.  

 The goal of many environmental barcoding studies is to infer relative taxon abundance 

from proportions of different sequence reads recovered (Amend et al. 2010; Deagle et al. 2010). 

However, there are myriad potential biases associated with using sequence counts to quantify 

organisms. These include potential biases caused by biological attributes of the target taxa (e.g. 

taxon specific variation in DNA copy number per cell, variation in tissue cell density or 

differences in environmental persistence). Technical biases can also be introduced at each 

laboratory and analytical step. Biases caused by target-specific differences in PCR amplification 

have been well scrutinized since a PCR amplification step is also crucial in traditional clone 

sequencing approaches (Polz and Cavanaugh 1998; Acinas et al. 2005; Sipos et al. 2007), but 

technical biases unique to high-throughput sequencing are just beginning to be evaluated. These 

include unavoidable sampling variance between template DNA molecules, but also systematic 

biases that cause final sequence counts to deviate from proportions present in template DNA 

molecules. For example, it has recently been reported that tagged PCR primers used for 

multiplex amplicon sequencing can impact bacterial community profiles obtained through 

pyrosequencing (Berry et al. 2011). Another study using pyrosequencing to look at fungal 

communities found that sequence count differences between species were due in part to biases 

introduced during bioinformatic filtering (Amend et al. 2010). Biases in sequences recovered 
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based on GC content have also been documented from the Ion Torrent sequencer (Quail et al. 

2012). 

 Several dietary DNA barcoding studies have used high-throughput sequencing to 

characterize food DNA amplicons recovered from faecal (scat) samples (reviewed in Pompanon 

et al. 2012), and in many cases sequence counts have been reported as a semi-quantitative proxy 

for diet composition (Deagle et al. 2009; Soininen et al. 2009; Kowalczyk et al. 2011; Murray et 

al. 2011; Brown et al. 2012). One study using pyrosequencing found the proportions of four 

primary fish prey amplicon sequences recovered from little penguin scats were similar to those 

obtained with parallel qPCR analysis, suggesting that sequencing related biases were not large 

(Murray et al. 2011). Another study of Australian fur seal diet showed that prey sequence 

proportions generated by pyrosequencing were consistent when two different sized mtDNA 

barcoding amplicons were used (Deagle et al. 2009). The sequence counts from these studies are 

generally presented as fixed values, as in other related fields (e.g. Yergeau et al. 2012), despite 

the fact that counts are potentially influenced by many decisions made throughout the 

experimental procedure and bioinformatic pipeline (see Amend et al. 2010). 

 Here we examine count data of fish DNA sequences recovered from scats of captive 

harbour seals fed a constant diet. The analysis was carried out using amplicon sequencing on the 

Life Technologies Ion Torrent Personal Genome MachineTM (Ion PGM) sequencer (Rothberg et 

al. 2011). Our initial objective was simply to see if proportions of prey in diet were reflected in 

the proportion of prey sequences recovered; however, our analysis highlighted the fluidity of the 

count proportions and led us to examine the influence of experimental factors on the recovered 

prey sequence proportions. We specifically considered: (1) sequences obtained from the forward 

and reverse read directions, (2) samples marked with different identification tags (added before 

or after sample PCR amplification) and (3) data filtered with various levels of quality control 

stringency and different minimum read length thresholds. The interactions between these factors 

were also considered and a sub-set of samples was re-examined on a second sequencing run to 

see if results were congruent. 
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2.3 Materials and methods 

 

2.3.1 Overview of genetic analysis  

 In the current study a chordate-specific mitochondrial marker (~120 bp) was amplified 

from scats of captive seals (targeting the three fish species in their diet) and the amplicons were 

examined in two Ion Torrent sequencing runs. Amplicons were labeled with a unique 

combination of a 3 bp sequence incorporated onto PCR primers (tag sequences – Tag A, Tag B 

or Tag C) and one of 16 different 11 bp multiplex identifier sequences (MIDs) added after PCR 

amplification. In Run I, amplicon sequences from 48 scat samples were analyzed and sufficient 

data obtained from 39 of these. For this run sequences over 100 bp were considered (Run I - 100 

bp) and a parallel analysis included shorter sequences (Run I - 90 bp).  In Run II, amplicons from 

8 scat samples were analyzed in triplicate (with a different primer tag in each replicate). The 

second run was done with newer sequence chemistry and most sequences were >100 bp so one 

dataset was considered (Run II – 100 bp). Details are outlined below. 

 

2.3.2 Feeding trials and scat sampling 

 The feeding trial was carried out with five adult female harbour seals at Point Defiance 

Zoo and Aquarium (Tacoma, WA, USA) between July 1 and August 17, 2011. The seals 

occupied a single pool, and were fed a constant diet of four species in fixed mass proportions: 

capelin (Mallotus villosus ) (40%), Pacific herring (Clupea pallasii) (30%), chub mackerel 

(Scomber japonicus ) (15%), and market squid (Loligo opalescens) (15%). Individual species 

within daily rations were weighed to the nearest 0.1 kg, and distributed evenly across three meals 

in which seals consumed every fish. Daily food intake varied based on seal body mass and their 

interest in food, but diet proportions were maintained within measurement precision (2.0% SD 

per species; see Table A-1 for a complete record of each animal’s diet). 

 During the trial, seal scat samples were collected from pool and haul-out areas (generally 

within 2-4 hours of deposition), put into Ziploc bags and stored at -20°C. We wanted to 

completely homogenize samples since prey DNA is not evenly distributed in pinniped scats 

(Deagle et al. 2005). We also wanted to remove all prey hard parts so they did not influence the 

genetic data, and to make the protocol useful for studies incorporating parallel hard-part analysis 
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(e.g. Tollit et al. 2009). To accomplish this, our sampling procedure involved transferring thawed 

individual scats into a 500 ml plastic container lined with a 124 µm nylon mesh strainer. We 

poured 200 ml of 90% ethanol over the scat which was then manually homogenized to form an 

ethanol-scat slurry. The strainer was removed along with prey hard parts and the ethanol 

preserved scat sediment was stored at -20°C for up to 3 months. DNA extraction was performed 

on approximately 20 mg of material using QIAamp DNA Stool Kit (Qiagen) following Deagle et 

al. (2005) with elution in 100µl AE buffer. 

 

2.3.3 Amplicon library preparation 

 The barcoding marker we used was a mitochondrial 16S fragment which is roughly 120 

bp in length and has been used previously for differentiating fish species (see Deagle et al. 

2009). We amplified this marker with primers Chord_16S_F (CGAGAAGACCCTRTGGAGCT) 

and Chord_16S_R_Short (CCTNGGTCGCCCCAAC) which bind to sites that are almost 

completely conserved in chordates. Amplicons from the three fish species are within a few base 

pairs in length but differ by more than 20% sequence divergence (see Table A-2, Table A-3, 

Table A-4 for sequence alignments including primer binding region). Initially we also ran PCRs 

with a second primer set which would amplify squid DNA in addition to fish (see Deagle et al. 

2009); however, the amplicon length was >250 bp and initial Ion Torrent library preparations 

failed (new library preparation procedures now allow sequencing of fragments >400 bp). 

Therefore, this marker was abandoned and the squid diet portion excluded from subsequent 

analyses. To limit amplification of seal DNA, a 32 bp blocking oligonucleotide (see Vestheim 

and Jarman 2008) matching harbour seal sequence was used in PCR (with a modified C3 spacer 

at the 3′-end to prevent extension; details in Table A-2). All PCR amplifications were performed 

in 20 μl volumes using a Multiplex PCR Kit (QIAGEN). Reactions contained 10 μl master mix, 

0.25 μM of each primer, 2.5 μM blocking oligonucleotide and 2 μl template DNA. Thermal 

cycling conditions were: 95 °C for 15 min followed by 34 cycles of: 94 °C for 30 s, 57 °C for 

90 s, and 72 °C for 60 s. Products were checked on 1.8% agarose gels. 
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Figure 2.1 Schematic showing, (a) the combination of multiplex identifier sequence (MID) and primer tag 

used to identify amplicons from individual samples, and (b) the sample labeling procedure. First this involved 

PCR amplification of scat template DNA using one of three tagged primer sets (A,B,C). Second, an Ion 

Torrent MID was ligated to the amplicons (16 different MIDs), such that all samples received a unique 

combination of primer tag and MID. 

 

We prepared amplicon libraries for two Ion Torrent sequencing runs. The first (Run I) 

contained equal volumes of DNA amplified from 48 individual scats with each sample being 

uniquely labeled (see below). The second (Run II) was a re-analysis of three new PCR 

amplifications of DNA from each of 8 scats characterized in the initial run. The purpose of this 

Run II was to see if the results (and technical biases) were consistent between runs. Ion Torrent 

protocols existing at the time only allowed differentiation of 16 samples, so a two-step sample 

tagging process was used to differentiate between amplicons from the 48 individual scat samples 

in Run I and the 24 samples in Run II (Figure 2.1).  

  



16 

 

Both tagging approaches are routinely used to differentiate samples in studies employing 

high-throughput sequencing platforms. In step 1, short tags added to the 5ˈ end of the primer 

were incorporated into amplicons during PCR. In our case, we amplified DNA extracted from 

each scat sample using primers containing one of three different 3bp primer tags (Tag A = CAT, 

Tag B = GCA, Tag C = TAC; for a given sample both forward and reverse primers had identical 

tags).The forward primer contained an additional 3 bp spacer (ATG) after the primer tag. These 

tags allowed us to identify 3 groups of PCR amplicons. In step 2 we used the Ion Barcoding 1-16 

kit (Life Technologies; part no. 4468654 Rev. B) which ligates up to 16 unique 11 bp multiplex 

identifier sequences (MIDs) onto amplicons post-PCR. PCR amplicons containing unique tagged 

primers were assigned to one of 16 Ion Torrent MIDs, thus creating 48 unique combinations of 

primer tags and MIDs for individual samples in Run I. This tagging scheme was used in part to 

evaluate tag specific biases. Individual tagging of samples could also have been achieved using 

many uniquely tagged primer sets; however that approach would not allow for replication of 

primer tags sufficient to evaluate tag biases. Sequencing Run II was intended in part to decouple 

the potential effects of individual sample variability and MID sequence from the effects of 

primer tags. In this sequencing run, each of 8 samples was amplified with all three tagged primer 

sets, and the MID sequence was kept constant for each sample. 

 

2.3.4 Sequencing 

 We used the Ion OneTouchTM System (Life Technologies) to prepare amplicons (already 

containing MIDs and associated capture and sequencing primers) for sequencing following the 

appropriate user’s guide protocol. In the single year that we have been working with the Ion 

Torrent system, at least four different sequencing kit upgrades have been released. Therefore, the 

two sequencing runs we report here were done with different kits. The first run was performed 

using the Ion OneTouch Template kit (p/n 4468660) and the second with the Ion OneTouch™ 

200 Template Kit v2 (p/n 4478316). The resultant enriched Ion SphereTM particles were loaded 

onto 314 Ion semiconductor sequencing chips, and sequencing was carried out on the Ion PGM 

sequencer. Bidirectional sequencing was performed (i.e. sequence reads started from forward and 

reverse PCR primers), but reads were not paired. Each run was expected to produce 

approximately 100,000 reads. For Run I, expected read length was 100 bp (~75 bp being target 
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specific sequence, as this estimate includes the PCR primer and primer tag), so the full 16S 

fragment was not covered in a single read. In the second run, due to improved chemistry, reads 

were expected to be 200 bp in length which covers the full amplicon.  

 

2.3.5 Bioinformatics  

 The Ion Torrent platform automatically sorted sequences based on the 16 MIDs, removed 

the MID sequence, and output a single FASTQ file for each MID. Quality metrics were based on 

reanalysis of raw data carried out at the end of the study with Torrent Suite software version 

2.0.1. All post-sequencing analysis (except for taxonomic assignment ; see below) was carried 

out using the R language (R 2010) making use of the Bioconductor packages ShortRead (Morgan 

et al. 2009) and Biostrings (all relevant FASTQ files and R code are available in Dryad). Our 

approach was slightly unconventional in that we kept all of sequences above the cut-off sequence 

length in the final database. This included sequences that were low quality, taxonomically 

unassigned, and those that did not match a primer. Briefly, the procedure involved importing 

FASTQ output files into R, and sequences along with quality information were extracted. 

Sequences and quality information were trimmed to 100 bp and data from shorter sequence reads 

was discarded. Sequences were exported in FASTA format and prey species assignment was 

done using the software package QIIME (Caporaso et al. 2010). In QIIME, a BLAST search for 

each sequence (removing tag and start of primer sequence) was done against a local reference 

database containing 16S sequences for the three fish species and harbour seal. The match of each 

Ion Torrent sequence to reference sequences was assessed based on having a BLASTN e-value 

less than a relatively strict threshold value of E < 1e-20 and a minimum identity of 0.9. The 

minimum identity score and our pre-defined reference sequences prevented assignment of 

chimeric sequences. Resultant species assignments (including a category for sequences with no 

blast hit) were imported back into the R workspace. Sequence quality scores for all base calls 

were incorporated into the dataset and mean quality scores were calculated. For each sequence, 

read direction was determined and sequences were matched to their individual sample of origin 

where possible (based on primer sequence, MID number and primer tag). For a sequence to be 

linked to a specific sample and read direction, it had to match the 3 bp primer tag and the first 11 

bases of the primer (11 bp chosen to avoid a homopolymer run in the reverse primer). This 
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included the ATG spacer sequence in the forward primer, and we allowed for mismatches at two 

variable sites in the reverse primer. The resultant dataset, containing all sequences in the original 

100 bp FASTQ files and related information, could then be queried based on quality score, read 

direction, tag identity, MID identity etc., and sequences tallied based on taxonomic assignments. 

In Run I many of the sequences were less than 100 bp in length; thus for comparison, a parallel 

dataset was created using a 90 bp size cut-off. 

 

2.4 Results 

 

2.4.1 Overview of sequence data (Run I+II) 

 The sequencing of Run I (amplicons from 48 individually identifiable scats) produced 

330,594 reads with a mean length of 102 bp (33.70 Mbp of data; 23.72 Mbp of Q20 Bases). The 

total number of Ion Torrent sequences generated varied considerably among the 16 MIDs (mean 

= 18,687, range = 1 – 45,972) with 22,338 sequences unassigned to a MID. The low sequence 

counts from some MIDs are likely due to errors made in the course of a complex MID labeling 

protocol (pooling of PCR products with different tags within a MID show very even recoveries, 

so this step is unlikely to cause these differences). Three of the 16 MIDs were excluded from 

further analyses due to low overall sequence counts (< 400 sequences/scat sample). For the 

remaining 13 MIDs, representing 39 scat samples, a total of 297,049 sequences were exported 

into FASTQ files (mean read number per MID = 22,850; range = 2,206 - 45,972). Out of these 

sequences, 63% (n= 188,534) were over 100 bp in length (93% were more than 90 bp in length) 

and these were assigned to local reference sequences using BLAST. 

 For the Run I – 100 bp dataset 70% (n=131,571) of sequences could be linked with a 

specific scat sample based on their match with a PCR primer and associated tag. The mean 

quality score for sequences matching a primer was 25.0 versus 20.5 for those without a match. 

Of the primer matched sequences 84% (n=110,270) were assigned to species in our reference 

library based on local BLAST assignation. The vast majority of assigned sequences matched the 

three fish species in the seals’ diet, with only 2.3 % (n=2522) identified as harbour seal. While 

only sequences with an identified primer and taxonomic assignment were considered in the final 

analysis, we also examined the discarded sequences. More than half of the sequences that were 
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excluded because they did not match a primer could be assigned to a prey species (n=30,614) 

using our stringent local BLAST. A subset of sequences without taxonomic assignment 

(including those without a primer match, or a primer match but no local BLAST match) were 

characterized against the full NCBI nucleotide database. The top hit for the majority of these 

sequences were feeding trial prey species, but were below the minimum identity (potentially 

including chimeric sequences). Most others had no strong matches in the database; however, a 

small percentage of sequences matched those from the preceding Ion Torrent sequencing run 

(humpback whale nuclear gene amplicons; 0.5 % of 100 bp dataset; n= 971). These 

contaminating sequences likely resulted from carry over in the OneTouch instrument used for 

emulsion PCR (a new cleaning procedure for maintaining the instrument between runs has since 

been implemented by Life Technologies). Overall, results from the Run I - 90 bp dataset were 

similar to those reported for the 100 bp dataset and are summarized in supplementary material 

(Figure A-1; Figure A-2; Figure A-3; Figure A-4). 

 A subset of samples was re-sequenced in Run II; these amplicons were from new PCR 

amplifications of DNA from 8 scats characterized in the initial sequencing run. DNA from each 

scat was amplified in triplicate (once with each set of tagged primers) and amplicons from each 

of the 8 samples were labeled with a separate MID sequence. This run with new sequencing 

chemistry produced 405,211 reads with a mean length of 151 bp (61.30 Mbp of data; 31.84 Mbp 

of Q20 Bases). The total number of Ion Torrent sequences was more consistent between the 8 

MIDs used in Run II (mean = 37,010, range = 24,334 – 48,391) with 104,140 sequences 

unassigned to a MID. Despite only 8 MIDs being employed in Run II, some sequences were 

allotted to each of the 16 potential MIDs. The sequences from 8 unused MIDs represented only 

0.6% of sequences (n= 2328; range 6-1415 per MID) and were generally low quality sequences 

(100 bp mean =17.6). These sequences primarily matched prey species of this study, and likely 

represent rare misassignment of sequences between MIDs rather than contamination since these 

amplicons had not been sequenced in the previous 10 runs. Low levels of contaminating 

sequences from the previous sequencing run were present (despite using the new OneTouch 

cleaning protocol). The contaminants were sheared long-range PCR amplicons (human DNA) 

and were apparent since many of the recovered sequences exceeded the maximum size of target 

mtDNA amplicons.  
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Figure 2.2 Comparison between proportions of three fish species fed to seals (triangles) versus overall 

proportions of sequence reads recovered (box plots). Box plots were generated from the sequence read 

proportions from 39 individual scat samples (Run I – 100 bp) using combined forward and reverse reads. 

  

From the 8 correctly classified MIDs a total of 296,079 sequences were exported into 

FASTQ files and 96% of these were over 100 bp in length. For the Run II 100 bp dataset, 56% 

(n=159,952; mean quality 26.8) could be linked to a specific PCR sample based on the primer; 

this percentage was low compared to Run I due to more non-target sequences (without close 

blast matches) being recovered. Of sequences which contained primers, 87% (n= 139,630) of 

these were assigned to species in our reference library. Harbour seal sequences made up 5.8% 

(n=8087) of these assigned sequences. 

 

2.4.2 Fish species proportions in 39 scats (Run I) 

 The proportion of three fish species consumed in the diet was known, so our initial 

objective was to simply see if these proportions were reflected in the sequence counts. Based on 
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previous experiments, we expected relatively low variation in the proportions of prey sequences 

amplified from scats of animals fed a consistent diet (Deagle and Tollit 2007; Bowles et al. 

2011). If we consider the average composition of 39 scat samples based on all assigned 

sequences >100 bp there was little variability in the proportions of sequences assigned to the fish 

species (Figure 2.2).  

These sequence proportions do not match proportions of the three species consumed. 

Capelin was considerably underrepresented (7.3± 3.0% SD versus 48.5% of fish diet), herring 

was considerably overrepresented by sequence proportions (74.8± 7.0% SD versus 34% of fish 

diet), and mackerel matched the diet (17.9±6.7% SD versus 17.5% of fish diet). The discrepancy 

could be caused by many factors (such as PCR bias or biological differences between prey). 

However, here our focus is specifically on how choices made throughout the experimental 

procedure and during bioinformatic sorting, impact proportions of various species in the 

sequence counts. 

 

2.4.3 Influence of read direction and size cut-off (Run I)  

 Despite forward and reverse DNA strands being present in equimolar amounts after PCR, 

sequencing read direction substantially influenced the proportions of sequences assigned to each 

fish species (Figure 2.3; Table 2.1).   

In the forward read direction, by far the largest percentage of sequences were herring 

(85.5% ± 9.5% SD) with very few sequences from mackerel (10.0% ± 7.2% SD) or capelin 

(4.5% ± 3.5% SD). In the reverse read direction, proportions of sequences were substantially 

different: herring (47.4 ± 17.7 SD), followed by mackerel (39.5 ± 17.1% SD), then capelin (13.1 

± 5.6% SD). Sequence counts indicate the differences between forward and reverse reads were 

primarily driven by a bias favouring herring fragment reads in the forward direction (Figure 2.4; 

Table 2.1). 
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Figure 2.3 Bar plots showing proportions of fish sequences recovered from 39 individual seal scats in 

sequenced in Run I (blue= capelin, red = herring, green = mackerel). Each bar represents an individual 

sample, and proportions of forward and reverse reads are shown separately. Data were filtered to retain 

either sequences >100 bp (top) or >90 bp (bottom). Proportions of three fish species by mass in the diet are 

shown as dotted lines on plots. 
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Table 2.1 Sequence counts and percentages of three fish species recovered from seal scats in two Ion Torrent 

sequencing runs. Run I data are from 39 scat samples, Run II data are from a subset of these scats (n=8) each 

re-run in triplicate with different primer tags (A,B or C). Data are shown for various subsets of recovered 

sequences (both without quality filtering and when only sequences with high quality scores are considered). 

 

  No quality filter Mean sequence quality >28 

Data/Subset Primer     Capelin Herring Mackerel   Capelin Herring Mackerel 

Diet/Fish1 % 48.5 34 17.5   

Run I - 100bp2 F % 4.5±3.5 85.5±9.5 10.0±7.2   2.8±2.9 91.5±6.5 5.7±4.7 

Mean count5 90 1586 209   25 822 52 

R % 13.1±5.6 47.4±17.7 39.5±17.1   15.1±7.8 22.6±22.6 62.3±22.6 

    Mean count5   121 456 301   47 95 167 

Run I - 90bp3 F % 10.8±7.2 76.7±7.9 12.5±4.2   6.5±6.1 83.4±6.3 10.0±3.8 

Mean count5 233 1588 276   61 860 107 

R % 20.2±8.8 64.0±13.3 15.7±7.9   29.7±17 45.1±26.4 25.1±15.3 

    Mean count5   440 1348 313   239 394 176 

Run II /TagA4 F % 16.7±4.2 68.4±2.6 14.9±4.3   15.8±5 71.9±3.7 12.3±3.6 

Mean count5 700 2940 651   425 2034 348 

R % 19.2±2.9 64.3±3.7 16.6±6.1   20.9±3.1 64.8±3.7 14.3±5.6 

    Mean count5   707 2395 628   516 1608 359 

Run II /TagB4 F % 13.8±3.6 74.2±3.1 12±3.5   12.5±3.6 79.9±3.5 7.6±2.4 

Mean count5 271 1469 238   170 1114 104 

R % 14.9±2.9 72±4.4 13.2±4.8   15.8±3.3 72.6±4.9 11.6±4.5 

    Mean count5   229 1102 200   175 795 126 

Run II/TagC4 F % 14.4±3.4 72.4±2.7 13.2±4.1   12.9±3.4 79.5±4.4 7.6±2.9 

Mean count5 376 1926 351   231 1476 137 

R % 20.4±4 61.1±4.6 18.4±6.5   35.0±11.9 41.0±12.1 24.0±8.7 

    Mean count5   454 1382 424   333 468 248 
1 Percentage composition of fish species in seals’ diet  
2 Data from sequencing Run I (amplicons from 39 scats) including only sequences >100 bp in length 
3 Data from sequencing Run I including all sequences >90bp in length 
4 Data from sequencing Run II, amplicons from 8 scats run in triplicate with different primer tags (A,B or C) 
5 Mean number of sequences recovered per sample within data subset 
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Figure 2.4 Mean sequence counts for fish in 39 individual seal scats for various levels of quality filtering (Run 

I – 100 bp; forward and reverse reads are shown separately). 

 

The proportions of various sequences recovered were also influence by the arbitrary 

sequence length cut-off point used to define the final dataset. When all sequences >90 bp (Run I 

– 90 bp) were considered (rather than only those >100 bp), the differences between forward and 

reverse reads were less dramatic (Figure 2.3; Table 2.1). 

 

2.4.4 Tag and MID biases (Run I)  

In addition to being influenced by read direction, sequence proportions were also 

influenced by primer tags added during PCR to trace sequences back to their sample of origin 

(Figure 2.5). In the forward read direction a higher proportion of herring DNA fragments were 

amplified and sequenced from primers containing Tag A (97.1±4.6 % SD) than from either Tag 

B (77.8 ±5.8% SD) or Tag C (81.6±2.7% SD). In the reverse read direction there was more 

variation in prey proportions within each tag, but substantial differences between tags were also 

apparent (e.g. Herring Tag A: 46.2±17.6% SD; Tag B 37.9±17.8% SD; Tag C 58.1±11.8% SD). 

The differences in species composition between tags were not consistent between read 

directions, suggesting values do not represent the true differences between samples (Figure 2.5). 
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Figure 2.5 Plots depicting the interacting effects of three different primer tags (A,B,C) and eight different 

quality filter cut-off values on proportions of fish sequences detected in 39 scats (Run I – 100 bp). Sequence 

proportions for each tag (represented by different shapes) at a given quality score cut-off (varies along the x-

axis) and add up to 1. Results for forward and reverse read directions are displayed separately. Error bars 

represent standard error.  
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Figure 2.6 Sequence quality scores vary between species and between (a) forward and (b) reverse reads. Box 

plots show summary of mean quality scores (median, range and upper/lower quartiles across 100 bp of 

sequence from Run I; n= 110,270 sequences). Line plots show variation in mean quality at positions along the 

sequence for each of target species in the same dataset. 

 

In Run II we processed individual samples with different tags to examine the tag effect 

further (see below). Only three samples were sequenced with each Ion Torrent MID, so we had 

little power to evaluate variability in sequence proportions between MIDs. However, there were 

some differences between MIDs that warrant further examination. For example, the length of 

sequence reads between MIDS varied slightly; in our analysis only 61% of the sequences from 

MID#4 were longer than 100 bp versus 87% of sequences from MID#5. The quality scores also 

varied slightly between MIDs. For example, 28% of herring sequences labelled with MID#4 had 
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mean quality scores over 30, versus only 10% labelled with MID#5 (calculated over 100 bp for 

both). 

 

2.4.5 Quality filtering bias (Run I) 

 Data reported up to this point were not quality filtered beyond initial processing by the 

Torrent Suite software; however, post-sequencing quality control in amplicon sequencing studies 

is generally carried out based on quality scores assigned to sequences. For amplicons in the 

current study, sequence quality generally diminished along the length of the read; quality scores 

were initially similar between species and then diverged, becoming species-specific as sequences 

became different (Figure 2.6). 

 Particular sequencing positions in both forward and reverse read directions had notably 

low quality scores. This was particularly apparent at the start of reads where species share the 

same sequence. For example, in the reverse read direction nucleotide quality score dropped 

dramatically to its lowest point at sequencing position 15 (mean quality score =18.2). That 

position corresponds with the third C in the CCCC homopolymer of the reverse primer. The 

majority of these primer sequences were incorrectly called as CCC (even when considering only 

higher quality reads in Run I that matched the first 11 bp of the primer and were taxonomically 

assigned). Overall, mean sequence quality scores varied between species, and to some degree 

with sequencing direction (Figure 2.6). In the forward direction, when quality scores were 

averaged over 100 bp, the highest quality sequences overall were herring (mean=27.4) followed 

by capelin (mean=25.9) and then mackerel (mean=25.2). For the reverse direction the opposite 

trend was observed (Reverse: mackerel = 27.3; capelin = 26.2; herring = 25.0). These species 

differences in sequence quality resulted in predictable biases in sequence counts that were 

introduced during quality filtering. For example, as quality score cut-off stringency increased for 

the reverse reads, more of the relatively higher quality mackerel sequences were present and 

fewer of the lower quality herring sequences were retained (Figure 2.5). 

 

2.4.6 Interactions (Run I) 

The proportions of sequences assigned to the three species were also affected by 

interactions between the factors evaluated in this study (sequencing direction, size cut-off, primer 
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tag, and quality cut-off value; see Figure 2.5). As mentioned above, sequence proportions in the 

forward direction responded differently to quality filtering than they did in the reverse direction. 

For example, the proportion of mackerel sequences decreased with additional quality filtering in 

the forward direction, whereas it increased with stricter quality filtering in the reverse direction. 

This effect was smaller in the 90 bp amplicon data set compared to the 100 bp data set (Figure 

A-1; Figure A-2).  

Sequence proportions also responded differently to the primer tags depending on the level 

of quality filtering and read direction. In the forward direction, Tags B and C tended to converge 

with Tag A when the level of quality filtering was increased, but Tag A sequence proportions 

were virtually unchanged (Figure 2.5). In contrast, in the reverse direction Tag C responded 

more strongly to quality filtering that the other two. Again these effects were somewhat 

dependent on sequence length cut-off used (Figure A-1; Figure A-2). 

 

2.4.7 Rerun of subset of samples (Run II) 

 In the absence of quality filtering, the eight re-run samples produced reasonably 

consistent results between samples, between the three amplifications with different primer tags, 

and between sequencing directions (Table 2.1). These results were in general agreement with 

overall results obtained from the 39 scats sequenced in Run I (all assigned sequences >100 bp in 

Run II: capelin=16.4± 3.3%; herring= 69.0± 4.4%; mackerel= 14.6±4.7%, compared to data in 

Figure 2.2). However, mean values in Runs I and II were produced by quite different underlying 

values. For example, in Run I the bias towards herring sequences in the forward read direction 

was much stronger compared to Run II (although observed to some extent in both runs; Table 

2.1). Direct comparison of 8 individual samples between runs was hampered because in Run I 

they were all amplified using primers labelled with Tag A, and these samples had a very large 

proportion of herring in the forward direction (Figure 2.5). This Tag A effect was not observed in 

Run II, in fact Tag A replicates in Run II had a lower proportion of herring compared to other 

tags (individual samples had always had less herring when labelled with Tag A compared to Tag 

B, the mean difference was 5.8%). While the tag effect was minor in the second run this bias, 

and differences between sequencing directions, became much more substantial with increased 

filtering based on quality scores (Table 2.1). Quality filtering had the strongest impact on 
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sequences labelled with Tag C in the reverse direction, similar to the effect seen in Run I. This 

three base pair primer tag (TAC) produces a homopolymer of three C’s when combined with the 

reverse primer (only two C’s with the other tags). This may explain why samples labelled with 

Tag C were more influenced by quality filtering. While the quality of sequences assigned to each 

species was generally higher in Run II compared to Run I this was not the case for mackerel 

reverse read sequences. The lower relative quality of mackerel sequences in Run II compared to 

other species resulted in mackerel sequences being less common when high levels of quality 

filtering are applied (the opposite of the effect seen in Run I: Figure 2.5; Figure A-1; Figure 

A-2). 

 

2.5 Discussion 

 There is considerable optimism about the use of high-throughput sequencing methods in 

DNA-based surveys of biodiversity, but biases associated with the approach are only beginning 

to be examined. Environmental barcoding studies generally characterise short PCR products, and 

these amplicon sequencing experiments are more strongly influenced by biases than more 

common applications of high-throughput sequencing such as re-sequencing of genes, genome, or 

transcriptomes. In the latter experiments, biases can be overcome to a large extent by having 

multiple overlapping reads of the same regions. Here, we focus on sequence count proportion 

biases in the context of a DNA-based diet analysis of seals. Captive seals received a constant diet 

containing three fish species and mtDNA barcode amplicons were recovered from their scat 

using an Ion PGM sequencer. To our knowledge this is the first study examining biases obtained 

using Ion Torrent technology amplicon sequencing, although some biases have been evaluated in 

the context of bacterial genome resequencing (Quail et al. 2012). Overall, proportions of fish 

sequences recovered from the seal scats were not directly related to diet proportions; 

furthermore, the sequence proportions we recovered depended on many technical factors (e.g. 

influence of read direction, sequence identifier tags, quality filtering). 

 

2.5.1 Sources of bias in amplicon sequence proportions 

 In our sequence counts from 39 scat samples we observed large differences in sequence 

proportions from the three fish species between forward and reverse reads. For a given sample 
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forward and reverse sequences come from opposing strands of the same set of amplicons; so 

although the sequences differ (i.e. they are reverse complements) they should be present in equal 

numbers after PCR. During Ion Torrent sequencing, there are two additional amplification steps 

(one during library prep and then an emulsion PCR step) which could preferentially amplify 

certain DNA molecules (Quail et al. 2012). Alternatively the sequencing process itself might be 

more efficient for certain sequences, resulting in deviation in proportions. A similar sequencing 

direction effect was noted in a previous pyrosequencing study, so this type of bias is not platform 

specific (Amend et al. 2010). Regardless of underlying cause, this type of bias could also affect 

representation of species in a mixture if there are large interspecific sequence differences.  

 Primer tags added to amplicons during initial template PCR, and identifier sequences 

ligated to products after PCR, have proven to be useful tools for differentiating between 

sequences with different origins within a high throughput sequencing run. Recent evaluations of 

potential bias introduced by primer tags suggest that some tags are favoured in PCR and 

sequencing reactions, which leads to biased sequence proportions (Berry et al. 2011). Our results 

corroborate that conclusion. In our first sequencing run, 39 samples were split between 3 primer 

tags and proportions of sequences assigned to the three test species differed between tags. We 

explicitly analyzed differences between PCR amplifications performed with different tags in a 

second sequencing run by examining 8 samples using each of the three primer tags. Here, there 

were also differences between proportional estimates from different tags. For example, in Run II 

the forward direction samples amplified with Tag A labelled primers always had less herring 

than when labelled with Tag B. In addition to PCR added tags, we also used different 

identification sequences added to amplicons post-PCR (MIDs). The post-PCR amplification 

steps mentioned above could differentially amplify MIDs; however, with only 3 samples per 

MID we had very little statistical power to detect potential biases. The primer tag bias was 

generally not as large as the other biases we encountered, but the impact of biases caused by 

primer tag or MIDs could be particularly insidious as these identifiers are often used to 

discriminate between different groups of samples, or different experimental treatments. It would 

be prudent to design studies so that particular identifiers are used across treatments in different 

sequencing runs. With this type of design it may be possible to evaluate tag introduced bias and 

if necessary correct for tag effects (or eliminate those tags producing outlier data). A two stage 
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PCR (in which template DNA is first amplified using untagged primers and tagged primers are 

added during the last few PCR cycles) has been suggested to reduce this bias (e.g. Berry et al. 

2011; Hajibabaei et al. 2011). However, the increased risk of cross-contamination needs to be 

considered, especially when amplifying from low quality samples with small amounts of starting 

DNA template. 

 Some species produce higher quality reads than others presumably due to their sequence 

differences; therefore, bioinformatic sorting based on quality scores introduces species-specific 

biases. While the number of sequences retained decreases as quality threshold goes up, there are 

abrupt decreases in sequences retained above a certain quality threshold for species with lower 

quality scores. The result is differing proportions of sequences from component species in 

datasets produced with different levels of quality filtering. We also observed that the distribution 

of quality scores for a particular species was occasionally bimodal, so changes in species 

composition based on quality were not always predictable based simply on species mean quality 

scores. One approach to deal with this bias may be to use less quality filtering to avoid penalising 

those sequences that tend to have a low quality score. However, retaining potential sequencing 

errors in datasets may result in difficulties with sequence assignment, so a trade-off will need to 

be made. As with pyrosequencing, the Ion Torrent sequence quality was particularly affected by 

homopolymer runs (see also Quail et al. 2012). During sequencing, these repeat sequences are 

called simultaneously, as signified by hydrogen ions being released during a single flow of 

nucleotide, and distinguishing multiple releases is problematic. Differences in frequency of 

homopolymers between species may lead to particularly strong divergences in quality score. 

 Interactions between the technical factors we evaluated were unexpected and highlight 

the difficulty in predicting sequence count biases likely to be present in a high-throughput 

sequencing dataset. We found that differences between primer tags changed depending on 

stringency of quality filtering. This implies that both total number of sequences generated and 

sequence quality are somewhat dependent on the primer tag used in PCR. Also, primer tag biases 

were different between forward and reverse read directions, indicating that an interaction 

between template sequence and tag sequence is important, rather than simply the tag sequence. 

The proportion of reverse reads from one primer tag that we used (Tag C) was particularly 

affected by quality filtering. Post-sequencing examination of the primer sequence revealed that 
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this particular tag created a three base pair homopolymer when combined with the reverse primer 

(versus two base pairs with other tags). This homopolymer lowers the quality scores of all 

sequences labeled with this tag resulting in more stringent filtering of these sequences relative to 

the other tags for a given quality cut-off level. Incorporating a small consistent spacer sequence 

between the identifier sequence and the primer could reduce this type of bias.  

 Our reanalysis of a subset of samples, to look at repeatability of sequence proportions and 

the repeatability of factors influencing those proportions, was somewhat confounded due to 

changes in sequence chemistry between runs. Despite this, overall sequence proportions were 

quite similar between runs. While this consistency is reassuring, the new results differ from the 

original dataset in many aspects. In the second run sequence proportions were considerably more 

similar between sequencing directions and between different primer tags (without stringent 

quality filtering). Some of the biases we observed in analysis of the original run were seen again 

(e.g. the Tag C effect mentioned in the previous paragraph), but other biases changed between 

runs (e.g. the quality of sequences obtained from different species changed slightly, thus quality 

filtering had a different impact on sequence proportions). The extreme bias in Run I for recovery 

of herring sequences from forward reads labelled with Tag A (97% of these prey sequences) was 

not seen in the second run (68%), indicating an experiment specific effect. This observation 

highlights the potential benefit of data averaging across multiple sequencing runs to minimise the 

influence of such outliers (although systemic biases will remain). The increased read length in 

the second run meant that very few sequences were filtered out due to short read length, an 

improvement since excluding sequences less than 100 bp in the first run magnified observed 

biases. In both runs, stringent quality filtering resulted in the largest deviations between 

proportions in forward and reverse reads. These results re-affirm that moderate levels of data 

filtering likely produce a more representative dataset. This is likely to be especially important 

when there are large differences in sequence or quality score between amplicons. 

 Given that high-throughput sequencing technologies are currently in a period of rapid 

transition, it may be unrealistic to expect that one can define and correct for many of the platform 

specific biases. For example, a recent Ion Torrent platform’s software upgrade significantly 

changed sequence qualities derived from our first sequencing run (presumably due to ongoing 

improvements in algorithms used to process raw data); these types of changes make detailed 
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analyses of sequence quality related biases obsolete soon after they are completed. This type of 

problem may become less of an issue as platforms stabilize, however a new generation of single-

molecule sequencing technologies is emerging and thus stabilization is unlikely to occur in the 

near future (Schadt et al. 2010). Spike-in standards (i.e. exogenous DNA sequences) similar to 

those being promoted for reproducibility in RNA sequencing (e.g. Jiang et al. 2011) and ChIP-

sequencing (e.g. Cheung et al. 2011) might be a useful approach to help control for complex 

biases and changing technologies. 

 

2.5.2 Relevance to quantitative DNA diet studies 

 High-throughput sequencing has only been applied in a small number of DNA based diet 

studies (reviewed in Pompanon et al. 2012) but these have generated considerable interest. In 

studies done to date it is common for data to be generated from a single sequencing run and 

analyzed with a static set of bioinformatic parameters (e.g. Deagle et al. 2009). These types of 

data overviews provide a misleading view of the precision of sequence proportions. While 

quantitative interpretations of sequence counts are often not discussed in detail, presentation of 

counts, or sequence proportions in graphs, implies some quantitative signature (e.g. Deagle et al. 

2009; Soininen et al. 2009; Kowalczyk et al. 2011; Brown et al. 2012). In practical terms, the 

effect of any potential sequence recovery biases on overall diet estimates (based on many 

samples) will be dependent on the composition of wild collected samples. If animals feed 

sequentially on different food items and most scats contain only a single dominant diet item, then 

biases will not be critical. However, if a mixture of food species is found in each scat (as in the 

current artificial feeding regime) then biases will be directly reflected in the final dataset (Deagle 

and Tollit 2007). An alternative to quantifying sequence proportions that has been used by some 

high-throughput sequencing diet studies, is to focus on frequency of occurrence data summaries 

to obtain an overall quantitative picture (e.g. Valentini et al. 2009a; Razgour et al. 2011; 

Shehzad et al. 2012). It is clear that inferring quantitative information from presence/absence 

data can have a number of problems (e.g. minor food items eaten frequently will appear to be an 

important part of the diet see: Laake et al. (2002)). In addition, these presence/absence measures 

of animal diet are also likely to be influenced by stringency of quality filtering and other 

bioinformatic parameters affecting read number retained in the final dataset. The low-level 
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contamination between runs and misassignment of sequences between samples, observed in the 

current datasets, would drastically affect presence/absence data summaries. Given the already 

demanding requirement to avoid contamination during PCR in amplicon sequencing studies (see 

Pompanon et al. 2012), this additional source of potential contamination is particularly 

unwelcome. 

 Despite many technical factors influencing relative proportions of amplicon sequences 

recovered in the current study, the fact that for a given set of parameters we observed consistent 

sequence proportions from scats of animals fed a constant diet is encouraging. The replicate PCR 

amplifications analyzed in the second sequencing run produced very consistent results when 

there was no quality filtering. These results were also quite similar to the least filtered dataset 

from our first run (90 bp amplicons and no quality filtering). The consensus view across the two 

runs and both sequencing directions is that, in read count data, capelin was underrepresented (10-

20% versus 48.5% in diet), herring was overrepresented (65-75% versus 34% in diet), and 

mackerel was quite close (10-20% versus 17.5% in diet). The reason for the discrepancy between 

the diet and the proportion of recovered sequences is not clear based on datasets in the current 

study. It is possible that the observed bias is caused by differential PCR amplification, 

differences in DNA density of the fish species (i.e. herring may have more copies of mtDNA per 

gram of tissue than capelin), or there could be differential survival of the fish’s DNA during 

digestion. If the biases are caused by either of the first two factors it is possible that parallel 

analysis of fish tissue mixtures could allow species-specific correction factors to be developed 

for relatively simple systems – this is a possibility we are investigating further. 

 

2.6 Conclusions 

 Due to the enormous amounts of data that can be generated by high-throughput 

sequencing of PCR amplicons, it is clear that this approach will be widely adopted to 

characterise mixed-species DNA samples. Our detailed analysis of three target species in a 

simple DNA mixture highlights that parameters in bioinformatic pipelines used to produce 

summaries of a dataset can drastically affect proportions of sequences that are recovered. In our 

case, less stringent data filtering (based on quality scores or read length) produced more 

consistent results; however, other datasets may show a different trend, and retention of low 
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quality sequences could have other consequences for field-based studies (e.g. species 

misclassification, or diversity overestimation). Therefore it would be prudent for researchers to 

examine the impact on their own data rather than simply limiting filtering. Potential biases 

introduced by primer tags used to identify samples should also be considered in experimental 

design, both to allow for their detection and to reduce impacts. Finally, it would be useful to 

employ taxon-specific standards of known proportions in sequencing runs to begin 

systematically monitoring and accounting for taxon-specific biases. The issues that we have 

highlighted may be smaller than other well documented forms of bias, such as impact of 

variation in PCR primer binding sites. This is particularly true for more complex environmental 

samples where hundreds of diverse taxa may be simultaneously targeted. In these types of 

samples further biases may also be introduced in extra bioinformatic processing steps that may 

be required (e.g. during more complex taxonomic assignment methods, or during removal of 

chimeric sequences). With the high level of interest in environmental DNA barcoding shown by 

the molecular ecology community, we expect that high-throughput amplicon sequence datasets 

will be under increasing scrutiny, and as technologies stabilize more accurate quantitative studies 

will be possible.  
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Chapter 3: Improving accuracy of DNA diet estimates using food tissue 

control materials and an evaluation of proxies for digestion bias 

 

3.1 Summary 

Ecologists are increasingly interested in quantifying consumer diets based on food DNA in 

dietary samples and high-throughput sequencing of marker genes. It is tempting to assume that 

food DNA sequence proportions recovered from diet samples are representative of consumer’s 

diet proportions, despite the fact that captive feeding studies do not support that assumption. 

Here, we examine the idea of sequencing control materials of known composition along with 

dietary samples in order to correct for technical biases introduced during amplicon sequencing, 

and biological biases such as variable gene copy number. Using the Ion Torrent PGM©, we 

sequenced prey DNA amplified from scats of captive harbour seals (Phoca vitulina) fed a 

constant diet including three fish species in known proportions. Alongside, we sequenced a prey 

tissue mix matching the seals’ diet to generate Tissue Correction Factors (TCFs). TCFs improved 

the diet estimates (based on sequence proportions) for all species and reduced the average 

estimate error from 28 ± 15% (uncorrected), to 14 ± 9% (TCF corrected). The experimental 

design also allowed us to infer the magnitude of prey-specific digestion biases and calculate 

Digestion Correction Factors (DCFs). The DCFs were compared to possible proxies for 

differential digestion (e.g. fish % protein, % lipid, % moisture) revealing a strong relationship 

between the DCFs and percent lipid of the fish prey, suggesting prey-specific corrections based 

on lipid content would produce accurate diet estimates in this study system. These findings 

demonstrate the value of parallel sequencing of food tissue mixtures in diet studies and offer new 

directions for future research in quantitative DNA diet analysis. 

 

3.2 Introduction 

 Many ecological studies attempt to identify and accurately quantify trophic interactions 

between species in food webs to enhance understanding of food web structure (Lindeman 1942; 

Pomeroy 1974). For decades, the primary tool available to accomplish this task has been the 

morphological identification of hard food structures that can be identified from the scats and 

stomach contents of consumers (Scheffer and Sperry 1931; Duffy and Jackson 1986). However, 
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there are major limitations and biases associated with quantifying diets from hard food remains, 

such as the inability to detect foods without hard structures and the differential survival of 

diagnostic hard structures during the digestive process (Gales and Cheal 1992; Cottrell et al. 

1996). As a result, ecologists are turning to molecular-based alternatives to quantify species 

interactions (Bowen and Iverson 2013). Among those, DNA based diet analysis is a rapidly 

evolving tool with quantitative capabilities that are just beginning to be explored (Pompanon et 

al. 2012). 

 An emerging diet quantification technique involves the PCR amplification and 

sequencing of food DNA using highly diagnostic semi-universal DNA markers such as those 

used by the Consortium for the Barcode of Life (Hebert et al. 2003). Many recent studies take 

advantage of next-generation sequencing technology to generate thousands of food DNA 

sequences per dietary sample, which allows for semi-quantitative estimates of diet to be obtained 

from the sequence proportions (see review by Pompanon et al. 2012). 

 Despite enthusiasm about the potential for quantitative diet analysis using this approach, 

the method relies on the substantial assumption that quantities of food DNA detected from 

dietary samples equate to the biomass proportions of food consumed. However, few studies have 

attempted to test that assumption. Quantitative analyses of DNA from scats of captive Steller sea 

lions (Eumetopias jubatus) and little penguins (Eudyptula minor) found consistent food species 

DNA proportions in the scats of animals fed the same diet (Deagle and Tollit 2007; Deagle et al. 

2010; Bowles et al. 2011). This implies a numerical relationship does exist between amounts of 

food consumed and proportions of food DNA detected in scat samples of predators—and 

indicates that quantitative techniques are reasonably precise. This is further supported by the 

observation that similar results can be obtained when applying both qPCR and Next-gen 

sequencing to the same set of dietary samples of unknown composition (Murray et al. 2011). 

Other subfields have also reported consistency in sequence read proportions between replicate 

Next-gen runs (Marioni et al. 2008; Kauserud et al. 2012). 

 Unfortunately, the ability to produce consistent diet estimates from sequence counts does 

not mean estimates are an accurate reflection of diet biomass percentages. In all three captive 

feeding studies (Deagle and Tollit 2007; Deagle et al. 2010; Bowles et al. 2011), the mass 

proportions of food consumed did not match the proportions of species DNA detected in dietary 
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samples. The combination of high precision and low accuracy for these techniques implies that 

there are systematic biases influencing proportions of food DNA detected in diet samples. 

However, systematic biases such as these can often be quantified and accounted for with 

numerical correction factors (Tollit et al. 1997b; Phillips and Harvey 2009; Cheung et al. 2011). 

 The potential biases likely to influence quantitative DNA diet assessment can be broadly 

categorized into those that are biological in origin (and therefore inherent to the study system), 

versus those that are introduced via the methodological protocol. 

Documented methodological biases include PCR bias (e.g. differential amplification of 

food species due to preferential primer binding), primer tag bias (i.e. short identification 

sequences attached to primers causing preferential species DNA amplification), and sequencing 

bias (e.g. when sequences from particular species are preferentially sequenced) (Sipos et al. 

2007; Berry et al. 2011; Quail et al. 2012). Recently, methodological biases have also been 

identified as a result of sequence quality filtering, sequencing read direction, and interactions 

between several biasing factors (Deagle et al. 2013). When possible, such biases should be 

minimized with careful study design; however not all methodological biases are feasible to 

mitigate for every possible food species.  

 Biological biases can also be very challenging to mitigate in DNA based diet 

quantification. There are likely two primary sources of biological bias in these studies: 1) mass 

specific differences in target gene copy number between food species (Deagle and Tollit 2007; 

Darby et al. 2013), and 2) differential digestion of food species DNA in the alimentary canal of 

the consumer (Greenstone et al. 2010; Leal et al. 2013). Although little research has been done 

to look directly at these biological biases, they must be considered if one intends to use food 

DNA sequence proportions to infer quantitative information about the mass proportions of food 

ingested by consumers. 

 The microbial ecology community is beginning to use microbial standards or “control 

materials” of known composition to account for similar quantification biases to those 

encountered in diet studies (Kembel et al. 2012; Huggett et al. 2013). Control materials can be 

sequenced along with samples of unknown composition and the differences between the 

sequence proportions of the controls and their known compositions can then be used to generate 

correction factors. The correction factors are applied to the sequence counts of the unknown 
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samples to increase the accuracy of the quantitative estimates. Similar spike-in standards are also 

applied to account for biases in studies using Next-gen sequencing to look at differential gene 

expression (Jiang et al. 2011; Zook et al. 2012). 

 If the control materials and unknown samples are both treated in an identical fashion 

during the methodological protocol, this approach should account for many of the species-

specific methodological biases in a single correction (e.g. DNA extraction bias, PCR bias, 

sequencing bias, quality filtering bias, etc.). In addition to accounting for methodological biases, 

the use of controls can also account for species differences in target gene copy number for all 

species represented in the controls (Darby et al. 2013). As such, the application of food species 

control materials in DNA diet studies has the potential to vastly improve the accuracy of diet 

estimates based on food species sequence proportions. 

 The purpose of our study was to determine whether the accuracy of next-generation 

sequencing diet analysis can be increased by sequencing DNA of control materials (a food tissue 

mix of known proportions) along with diet samples taken from animals fed a known diet. We 

therefore performed a feeding trial using captive harbour seals (Phoca vitulina) fed known 

quantities of prey, and sequenced prey DNA amplified from seal scats and a prey tissue mix. 

The study design also allowed for quantification of prey-specific digestion biases, because any 

remaining bias not accounted for by the prey tissue mix should be attributable to differential prey 

digestion (i.e. if we know the sequence proportions the methodology produces from a tissue mix 

that goes into the seal, and the sequence proportions that come out in the scats, the difference 

between the two represents prey-specific differences in recovery due to digestion). As a 

secondary component of the study, we compared the prey-specific biases to the proximate 

compositions of the seal prey (e.g. % protein, % Lipid, % moisture). In particular we wanted to 

determine if these prey characteristics were correlated with the observed digestion bias, in the 

hopes of identifying potential proxies for digestion bias that can be used when feeding trial data 

are not available.  

 

3.3 Materials and methods 

 An overview of the study design and laboratory workflow is available in Figure 3.1. 
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Figure 3.1 Overview of the study design and laboratory workflow. Captive harbour seals were fed fixed mass 

proportions of three fish species (capelin, herring, and mackerel), and a fish tissue mix was prepared from 

whole fish that matched the diet mass proportions. DNA was extracted and amplified from 48 seal scats and 6 

fish tissue mix subsamples to form two separate amplicon pools. The amplicon pools received unique Ion 

Torrent adapter sequences with MIDs, and then sequenced on the Ion Torrent PGM©. Sequence data were 

demultiplexed by MID and Forward/Reverse primer sequences, then assigned to a prey fish species or 

harbour seal using strict sequence matching criteria. See text for details. 
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3.3.1 Feeding trial, scat sampling and preservation 

 The scat samples we analyzed were from a feeding trial previously described by Deagle 

et al. (2013). Briefly, the trial involved five adult female harbour seals fed a constant diet of four 

species in fixed proportions: capelin (Mallotus villosus) (40%), Pacific herring (Clupea pallasii) 

(30%), chub mackerel (Scomber japonicus ) (15%), and market squid (Loligo opalescens) (15%). 

The total daily food intake varied based on seal body mass and their interest in food, but the diet 

proportions were maintained at the target proportions within the range of measurement precision 

(2.0% SD per species). During the feeding trial, harbour seal scat samples were collected from 

both the pool and haulout areas as a prior study found no significant differences in genetic 

composition between pool or haul-out collected scats (Bowles et al. 2011). Scat samples were 

generally collected within 2-4 hours of deposition, and put into Ziploc bags and immediately 

frozen at -20°C. DNA extraction was performed on approximately 20 mg of scat sediment (i.e. 

hard parts were removed) material using QIAamp DNA Stool Kit (Qiagen) according to the 

protocol described in Deagle et al. (2005) with elution in 100µl elution buffer (10 mM Tris-Cl, 

0.5 mM EDTA; pH 9.0). 

 

3.3.2 Preparation of food tissue mixture 

 A fish tissue mix was prepared based on the mean proportions of fish consumed by the 

captive seals. Four whole individual fish of each species from the same lot fed to the seals were 

homogenized using an electric blender, and homogenates were combined by species. Whole 

fishes were used to ensure that mtDNA variability between prey fish species would be 

represented in the tissue mix. A 100 g fish tissue mix was created by combining the four species 

homogenates by wet mass (41.0 g capelin, 29.0 g herring, 15.0 g mackerel, and 15.0 g squid). 

Six ~ 10 g subsamples of the tissue mix were further blended using a tissue homogenizer and 

DNA was extracted from ~ 20 mg of each of the 6 tissue mixes, using the DNeasy Blood & 

Tissue Kit (Qiagen) as per the manufacturer’s instructions for animal tissues. Subsamples of the 

100 g tissue mix were used to diminish the potential influence of laboratory error (e.g. in 

homogenization, extraction, or PCR amplification) on the final tissue mix sequence percentages. 
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3.3.3 Amplicon library preparation 

 The barcoding marker we used was a mitochondrial 16S fragment that is roughly 155 bp 

in length and has been used previously for differentiating fish species, (see Deagle et al. 2009). 

We amplified this marker with primers Chord_16S_F (CGAGAAGACCCTRTGGAGCT) and 

Chord16S_R (CCTNGGTCGCCCCAAC) which bind to sites that are almost completely 

conserved in chordates (see Deagle et al. (2013) for primer alignments against feeding trial fish 

species). This primer set does not amplify DNA from squid – therefore diet proportions were 

recalculated for the three fish species and applied in later calculations. 

 A blocking oligonucleotide was included in the PCR of all reactions to limit 

amplification of seal DNA (Vestheim& Jarman 2008). The oligonucleotide (32 bp: 

ATGGAGCTTTAATTAACTAACTCAACAGAGCA-C3) matches harbour seal sequence 

(GenBank Accession AM181032) and was modified with a C3 spacer, so it is non-extendable 

during PCR (Vestheim and Jarman 2008). This oligo selectively blocks amplification of seal 

DNA because it overlaps with the 3′-end of the Chord_16S_F primer and adjoining seal 

sequence, but has little homology to fish species.  

 All PCR amplifications were performed in 20 μl volumes using the Multiplex PCR Kit 

(QIAGEN). Reactions contained 10 μl (0.5 X) master mix, 0.25 μM of each primer, 2.5 μM 

blocking oligonucleotide and 2 μl template DNA. Thermal cycling conditions were: 95 °C for 15 

min followed by 34 cycles of: 94 °C for 30 s, 57 °C for 90 s, and 72 °C for 60 s. All PCR 

products were checked on 1.8% agarose gels. 

 We prepared two separate amplicon pools for sequencing on the Ion Torrent platform. 

The first contained amplicons from 48 scat samples that were each individually amplified prior 

to pooling. The pool was created by combining 2µl of each resultant PCR product to form a 

single scat metasample for sequencing (scat amplicon pool). The second pool contained 

amplicons from the 6 individually amplified tissue mix subsamples that were designed to match 

the seal diet proportions (tissue mix amplicon pool). The concentration of a sub-set of samples 

was quantified using fluorometry (Qubit system; Life Technologies) to ensure approximately 

equal concentration of the PCR products prior to pooling. To differentiate the two pooled 

samples we used the Ion Barcoding kit (Life Technologies; part no. 4468654 Rev. B, 08/2011) 

which ligates unique multiplex identifier sequences (MIDs) onto amplicons post-PCR along with 
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the necessary Ion Torrent capture sequences. The full amplicon library also contained four other 

amplicon pools from an unrelated study that each received a unique MID sequence by post-PCR 

ligation. 

 

3.3.4 Sequencing 

 We used the Ion OneTouchTM System (Life Technologies) to prepare the amplicon 

Library for sequencing following the user’s guide protocol (part no. 4468660 Rev. C, 10/2011). 

The resultant enriched Ion Sphere TM particles were loaded onto a 314 Ion semiconductor 

sequencing chip and sequencing (65 cycles) carried out on the Ion PGM sequencer. Bidirectional 

sequencing was performed (i.e. sequence reads started from either forward or reverse PCR 

primers), but reads were not paired. Each sequencing run was expected to produce about 10 Mb 

of sequence data, or 100,000 sequence reads with typical read length of 100 bp (~75 bp being 

target specific sequence).  

 

3.3.5 Bioinformatics  

 The Ion Torrent platform automatically sorted sequences based on the MIDs, removed 

the MID sequence, and output a single FASTQ file for each MID and thus each amplicon pool. 

We performed the sequence preparation steps using a local installation of the open source Galaxy 

bioinformatics tools (Blankenberg et al. 2010; Giardine et al. 2005; Goecks et al. 2010). 

Sequences with less than 100 bp were removed from the dataset and all sequences were trimmed 

to 100bp in length to avoid comparability issues with variable length sequences. No quality 

filtering was applied to the dataset to avoid any additional bias that may result from preferential 

species sequence removal during filtering (Deagle et al. 2013). 

 Sequence assignment to read direction (forward or reverse) and species was done using 

the Linux-based open source software package QIIME with sequences from both amplicon pools 

(Caporaso et al. 2010). For a sequence to be assigned to a read direction, it had to match the first 

15 bases of the primer (forward or reverse), allowing for up to 2 mismatches in the primer 

sequence. After assignment to read direction, a local nucleotide BLAST search was done for 

each sequence against a reference database containing 16S sequences for the three fish species 

and harbour seal (Altschul et al. 1990). The accession numbers of the reference sequences are 



44 

 

available in the supporting material (Table S2) of the companion study (Deagle et al. 2013). The 

match of each Ion Torrent sequence to reference sequences was assessed based on having a 

BLASTN e-value less than a relatively strict threshold value of E < 1e-20 and a minimum 

identity of 0.9. It is worth noting here that the mtDNA marker differs by more than 20% 

sequence divergence between the three prey fish species. The minimum identity score and our 

pre-defined reference sequences prevented assignment of chimeric sequences. To ensure that the 

species assignment was accurate, a BLAST search was performed in GenBank using a subset of 

the assigned sequences and the results were 100% congruent with the local database assignment. 

 

3.3.6 Proximate composition analysis of prey species 

 To help determine if there are suitable proxies for the calculated biases, we analyzed the 

proximate composition of the prey species and compared the results to the respective correction 

factors (see correction factors section below). Five individual fish of each prey species from the 

same lot fed the seals were submitted for full proximate analysis (% moisture, % ash, % protein, 

% lipid, % carbohydrates). In brief, the % moisture was measured by desiccation of prey tissue, 

the % ash was measured by combustion of known prey mass, % protein was measured by 

nitrogen analysis, and the % lipid was measured by petroleum ether extraction. Percent 

carbohydrate was not reported because only negligible levels of carbohydrate were detected in 

the prey fish. 

 

3.3.7 Tissue mix correction factors 

 The tissue mix was sequenced along with the diet samples to account for potential 

differential amplification or sequencing between species, and species differences in mtDNA 

template copy number. Thus, based on sequence proportions from the tissue mix amplicons, we 

calculated a Tissue Correction Factor (TCF) for each fish species in the diet using 

 

௜ܨܥܶ ൌ 	
௜ܦ
௜ܶ
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where i is the prey fish species (capelin, herring or mackerel), Di is the proportion of species i in 

the tissue mix, and Ti is the proportion of species i detected in the tissue mix amplicon pool. 

TCFs were then applied to the species sequence counts generated from the scat amplicon pool, 

and corrected scat proportions were calculated from the corrected sequence counts (later referred 

to as TCF corrected scat sequences %). 

 

3.3.8 Digestion correction factors 

 Our working hypothesis was that any bias that remained after accounting for 

methodological biases (involved in amplicon sequencing) and biological biases (of differential 

mass specific target gene copy number between prey species) was attributable to differential 

digestion of the prey species by the predator. Therefore, the difference between the tissue mix 

sequence proportions (which account for the aforementioned biases) and the scat sequence 

proportions, should reflect any differential prey digestion—we thus calculated the inferred 

Digestion Correction Factor (DCF) for each prey species using 

 

௜ܨܥܦ ൌ 	
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where Si is the proportion of species i detected in the scat amplicon pool. DCF can only be 

calculated when both diet and TCFs are known for the particular consumer (which is not possible 

for field studies). We therefore compared the DCFs to the proximate composition of the prey fish 

to determine whether a composition component could be used as a proxy for the digestion bias 

(see statistical analyses for details). 

 

3.3.9 Statistical analyses 

 The correction factors were log transformed to a linear scale prior to comparing them to 

the results of the proximate composition analysis. Thus, a four-fold correction factor in the 

positive direction would be 4.00 (or 0.60 when log10 transformed), and a four-fold correction 

factor in the negative direction equals 0.25 (or -0.60 when log10 transformed). We used 

coefficients of determination and p-values from general linear models to determine whether there  
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Table 3.1 Accounting of all sequences produced by ion torrent sequencing of the harbour seal scat amplicon 

pool and the tissue mix amplicon pool for three prey species (capelin, herring and mackerel). 

 

  Scat pool   Tissue mix 

  Sequence count Percent of total   Sequence count Percent of total 

Total sequences 64831 100.0 
 

36393 100.0 

Less than 100bp 21248 32.8 
 

10752 29.5 

Homopolymer filtered 264 0.4 
 

165 0.5 

No primer match 9790 15.1 
 

7219 19.8 

No BLAST 
assignment 

7290 11.2 
 

3647 10.0 

Forward Capelin 390 0.6 
 

390 1.1 

Forward Herring 10464 16.1 
 

4224 11.6 

Forward Mackerel 3514 5.4 
 

2778 7.6 

Forward Harbour seal 142 0.2 
 

0 0.0 

Reverse Capelin 1237 1.9 
 

1300 3.6 

Reverse Herring 5757 8.9 
 

2511 6.9 

Reverse Mackerel 3987 6.1 
 

3407 9.4 

Reverse Harbour seal 748 1.2   0 0.0 

 

were strong relationships between the log10 transformed correction factors and each component 

of the proximate composition analysis (i.e. % moisture, % ash, % protein, % lipid). The best 

fitting models for the DCFs therefore indicated which properties of prey composition could 

potentially be used to independently calculate digestion correction factors. 

 We also compared the TCFs to the proximate composition data and published values of 

red/white muscle ratios in fishes. Our thought was that if there is a strong relationship between 

indicators of mitochondrial DNA density (e.g. red muscle ratio) and the TCFs, it would indicate 

that the methodological biases of the protocol are less influential than are differences in target 

gene copy number between fish species.  
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Table 3.2 . Data used in the calculation of Tissue Correction Factors (TCFs) and Digestion Correction Factors 

(DCFs). 

 

  
Capelin  Herring Mackerel 

Diet % 48.5 34.0 17.5 

Tissue mix sequence count 1690 6735 6185 

Tissue mix sequence % 11.6 46.1 42.3 

Scat sequence count 1627 16221 7501 

Scat sequence %  6.4 64.0 29.6 

TCF 4.19 0.74 0.41 

DCF 1.80 0.72 1.43 

TCF corrected scat % 31.2 54.7 14.2 

 

 

3.4 Results 

 

3.4.1 Sequencing and bioinformatics 

 The Ion Torrent sequencing run that included the scat amplicon pool, tissue mix amplicon 

pool, and four unrelated amplicon pools, produced a total of 311,635 amplicon reads or 33.6 

Mbp of data. The quality of base calls was 13.7 Mbp Q20 bases, 17.6 Mbp Q17 bases, and an 

average read length of 108 bp. Of the total reads, 64,831 were assigned to the MID for the scat 

amplicon pool and 36,393 were assigned to the MID for the tissue mix amplicon pool. A 

complete accounting of all sequences and species assignment for both amplicon pools is 

contained in Table 3.1, and all sequences have been deposited in Dryad in FASTQ format. For a 

discussion of the disparity between forward and reverse read counts, see Deagle et al. (2013). 

 After recalculating the diet proportions excluding the squid component, the expected 

proportions of sequences from the scat pool and the tissue mix pool were 48.5% capelin, 34.0%  
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Figure 3.2 Comparison between mass percentages of three fish species fed to seals (  ) and 

sequence percentages obtained from scats (  ) and the tissue mix (  ). The scat sequence 

percentage diet estimates adjusted with Tissue Correction Factors (TCF) are also shown 

( ). For explanatory purposes, the magnitudes of the tissue bias and digestion bias are 

shown for herring. (Cap = capelin, Her = herring, Mac = mackerel). 

 

herring, and 17.5% mackerel. However, after summing the assigned sequence counts for forward 

and reverse reads and converting these to proportions, neither amplicon pool matched the diet 

proportions ( 

Table 3.2).  

 In the tissue mix amplicon pool, capelin was highly underrepresented (11.6%), while 

herring was moderately overrepresented (46.1%), and mackerel was highly overrepresented 

(42.3%) (Figure 3.2). In the scat amplicon pool, capelin was even more underrepresented (6.4%) 

than it was in the tissue mix amplicons, herring was more overrepresented (64.0%), and 

mackerel was somewhat less overrepresented (29.6%). 
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Figure 3.3 The relationships between the log transformed Tissue Correction Factors (log TCF) and the 

percent whole body protein of the prey fish (Left), and between logTCF and the family-specific percentage of 

red muscle fibers documented in Greek-Walker& Pull (1974) (Right). Error bars represent standard error. 

 

3.4.2 Tissue Correction Factors 

 Using the data from the tissue pool we calculated species-specific correction factors 

(TCFs) to adjust the sequence counts of the scat amplicon pool to take into account technical 

biases and differences in DNA density between fish species. The correction was largest for 

capelin (4.19, log10 transformed = 0.62), followed by mackerel (0.41, log10 transformed = -0.38), 

and then herring (0.74, log10 transformed = -0.13). Based on these correction factors capelin is 

expected to be underrepresented in the scats and the other two species overrepresented. This is in 

fact what we observed in the amplicons recovered from the scats before corrections. After 

applying the TCFs to the scat DNA sequence counts, the average difference between the 

percentages of prey DNA contained in the scats and the diet biomass percentages was 

substantially reduced from 28 ± 15% (uncorrected) to 14 ± 9% (TCF corrected). The TCF 

corrected scat percentages were: capelin = 31.2%, herring = 54.7%, mackerel = 14.2% (Figure 

3.2). It is noteworthy that even after tissue correction the scat sequence proportions did not 

correctly rank the importance of the different prey species in the diet. 

 Linear models showed a relatively strong negative relationship between the log 

transformed TCFs and the percentage of protein (slope = -0.22, intercept = 3.56, R2 = 0.99, p =  
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Table 3.3 Proximate composition analysis results for the three prey fish in the feeding trial, displaying mean 

percentages and standard errors. 

 

  Capelin Herring Mackerel 

Lipid 2.4 ± 0.9 9.8 ± 1.0 4.3 ± 0.4 

Protein 13.4 ± 0.2 16.5 ± 0.3 18.0 ± 0.1 

Ash 2.3 ± 0.1 2.5 ± 0.2 3.1 ± 0.2 

Moisture 81.3 ± 0.8 71.8 ± 0.8 74.6 ± 0.4 

 

0.05; see Figure 3.3). This indicates that higher protein fishes were overrepresented in the tissue 

mix amplicon pool (Table 3.3). 

Weak relationships were observed between TCFs and the percent ash in prey (slope = -

1.17, intercept = 3.12, R2 = 0.74, p = 0.34), and the percent moisture in prey (slope = 0.09, 

intercept = -6.91, R2 = 0.74, p = 0.34). No relationship was observed between TCFs and the 

percent lipid (slope = -0.07, intercept = 0.41, R2 = 0.25, p = 0.67). 

 

3.4.3 Digestion Correction Factors 

 The DCFs were generally smaller in magnitude than the TCFs, indicating that prey 

specific digestion was the lesser source of bias in this study. Herring was again overrepresented 

as a product of digestion bias (DCF = 0.72, log10 transformed = -0.14), and capelin was again 

highly underrepresented (DCF = 1.80, log10 transformed = 0.26). Mackerel however, which was 

strongly overrepresented based on the tissue mix, produced a positive digestion correction (DCF 

= 1.43, log10 transformed = 0.16), indicating that it was underrepresented as a result of digestion 

bias (Table 3.2). This result implies that in the case of mackerel, the two sources of bias 

identified (tissue bias and digestion bias) have opposite biasing effects.  

 A very strong relationship was detected between the log transformed DCFs and the 

percent lipid content of the prey fishes when linear models were fit between the DCFs and the  
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Figure 3.4 The relationships between the log transformed Digestion Correction Factors (log DCF) and the 

proximate composition analysis components of the three prey species (top left = % lipid, top right = % 

protein, bottom left = % ash, bottom right = % moisture). Digestion correction factors calculated based on 

the inferred digestion bias (i.e. the difference between the scat sequence proportions and the tissue mix 

sequence proportions). Error bars represent standard error. 

 

prey proximate composition components (slope = -0.05, intercept = 0.39, R2 = 1.00, p = 0.001; 

Figure 3.4).  

This indicates a negative relationship between prey fish lipid content and the log10 DCF 

(i.e. higher lipid prey fish require negative correction as a result of digestion bias, and lower lipid 

prey fish require positive correction). A weaker relationship was also observed between the log 

transformed DCFs and the percent moisture in prey (slope = 0.04, intercept = -2.71, R2 = 0.76, p 
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= 0.32). No relationship was observed between the transformed DCFs and the percent protein in 

prey fish (slope = -0.04, intercept = 0.70, R2 =0.18, p = 0.72), or the percent ash in prey fish 

(slope = 0.01, intercept = 0.05, R2 = 0.00, p = 0.99). 

 As previously stated, the Digestion Correction Factors were only calculated to evaluate 

whether there are suitable proxies for digestion bias in this study system. In this case we chose 

not to apply the DCFs to scat sequence counts because they are only calculable when the diet of 

the consumer is known, and therefore not useful in the typical applications of the technique. 

However, the strong correlation between the DCFs and the lipid content of the prey fish indicates 

that a correction simply based on prey lipid percentage would exactly match the DCFs, and 

therefore would produce scat sequence percentages that perfectly estimate the diet when 

combined with TCFs. 

 

3.5 Discussion 

 In an ideal situation, dietary studies using next-generation sequencing to characterize 

diagnostic DNA markers from stomach contents or scats of consumers could assume a direct 

relationship between the sequence proportions of food items recovered and the proportions of 

food eaten. If this was the case, the relative importance of species in a consumer’s diet could be 

determined with some certainty – the ultimate goal of most diet studies. Unfortunately, while 

past captive feeding studies have demonstrated there is a relationship between consumer diet and 

prey DNA quantity (i.e. scats of animals fed the same diet yield consistent prey sequence 

proportions), the sequence proportions do not accurately reflected the diet (Deagle et al. 2010; 

Deagle et al. 2013). Thus, DNA diet techniques making use of sequence proportions can 

presently produce consistent but incorrect diet estimates. 

 Other DNA-based diet studies have taken a variety of approaches to avoid the problems 

involved in direct DNA quantification. Some researchers have chosen to focus on the overall diet 

breadth of consumers, and identification of the prey field (e.g. Valdez-Moreno et al. 2012). This 

type of approach is robust when contaminants are minimal, and useful in situations where 

consumer’s diet is poorly characterized; however the level of information produced is not 

sufficient for many ecological investigations. An alternative approach is to calculate the percent 

frequency of occurrence of prey items (i.e. summarizing the proportion of samples containing a 
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particular diet item). Frequency of occurrence summaries have been used to make comparisons 

between sampling sites (e.g. Kowalczyk et al. 2011; Shehzad et al. 2012) and between the diets 

of different species (e.g. Razgour et al. 2011). While occurrence summaries may be useful as a 

relative measure of the importance of food species for a consumer population, they have limited 

utility for the quantification of prey biomass. Furthermore, the importance of minor diet items is 

often exaggerated using occurrence indices, and small numbers of contaminating sequences or 

secondary predation DNA can have major impacts on diet estimates. Finally, some researchers 

have suggested that rather than dismissing the quantitative information contained in food DNA 

sequence counts, the proportions of those sequences can be useful for comparative studies or 

ranking of food species importance – even if sequence proportions do not accurately reflect diet 

biomass (see Pompanon et al 2012).  

 Our goal in the current work was to investigate the factors causing the mismatch between 

scat sequence proportions and diet biomass proportions, and to evaluate the feasibility of 

correcting for these biases using an approach that has been tested in other subfields. The biases 

herein likely result from multiple factors, including: differential PCR amplification or 

sequencing of food species DNA, differences in template DNA density between food species, 

and differences in survival of DNA during digestion. We isolated and examined sources of bias 

by sequencing scat DNA from captive harbour seals fed known quantities of prey and a tissue 

mix of the same prey species. Proximate composition analysis of the prey allowed us to explore 

potential proxies for the isolated biases that could be used when the biases cannot be measured. 

Due to the limited scope of the feeding trial, and taxa represented, our study can be viewed as a 

hypothesis generating experiment designed to guide future research efforts in quantitative DNA 

diet analysis. 

 

3.5.1 Food tissue control materials 

 The tissue mix we sequenced in parallel with the scat DNA should account for several 

sources of bias. First, the tissue mix should account for technical biases introduced during the 

methodological protocol such as the possibility of preferential primer binding or DNA synthesis 

in PCR, and the possibility of selective amplicon sequencing (see Pompanon et al. (2012) for 

discussion). It should also correct for potential bias that would occur if different prey fish contain 
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different densities of mitochondrial DNA in their tissue. In this case, fish that contain higher 

mtDNA density would yield more PCR amplicons due to increased template availability, and 

would be overrepresented by the sequence proportions relative to biomass proportions. 

 Based on sequences from the tissue mix amplicon pool, capelin DNA was highly 

underrepresented, herring DNA was slightly overrepresented and mackerel DNA was highly 

overrepresented. This may indicate that there is a strong methodological bias against recovery of 

capelin sequences relative to mackerel sequences, or that capelin mtDNA density (i.e. amount of 

mtDNA per gram of tissue) is substantially lower than for mackerel. One piece of evidence 

suggesting mtDNA density is more important than methodological biases in the current study is 

the negative relationship between the tissue mix correction factors and the amount of whole body 

protein in fish tissue. This indicates that the overrepresented fish (mackerel) is higher in protein 

content than the underrepresented fish (capelin). The intuitive explanation is that increased levels 

of whole body protein are associated with high muscle density, and therefore increased levels of 

mitochondrial DNA (Weatherley et al. 1998; López-Albors et al. 2008; Fernández-Vizarra et al. 

2011).  

 However, the relationship may be more direct if we examined the ratio of red to white 

muscle fibers in the fish tissue, because red muscle has particularly high mitochondria density 

(Battersby& Moyes 1998). Chub mackerel belongs to the tuna family Scombridae, which is 

known for having a very high proportion of red muscle fibers, and may explain why mackerel 

are overrepresented in this dataset. In a survey of red muscle content in marine fishes, the 

average percentage of red muscle from the fish families included in our study was 7.4% for 

Osmeridae, 19.8% for Clupeidae, and 26.1% for Scombridae (Greek-Walker and Pull 1974). 

Plotting these red muscle percentages against the tissue correction factors shows virtually the 

same relationship we observed between the tissue correction factors and protein percentage 

(slope = -0.05, intercept = 1.01, R2 = 0.99, p = 0.06; Figure 3.3) 

 In this specific study system it may be possible to correct for the mtDNA tissue biases 

simply by taking advantage of the linear relationship between red muscle percentages, or protein 

percentages, and the TCFs. However, correction based solely on a proxy for mtDNA density 

would not account for the methodological biases also captured by the TCFs, and therefore only 

useful in situations such as this where methodological biases appear to be minimal.  
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 It is often inconvenient in DNA based diet studies to account for variable gene copy 

number between prey species or tissues, and it could be possible to mitigate the problem by 

targeting a single copy genomic DNA marker instead of a mitochondrial gene. However, this 

approach would only be effective if cell density (and therefore the marker density) is more 

consistent between food species than mtDNA density. Furthermore, a single copy genomic 

marker is much less likely to amplify from a scat sample due to the degradation of prey DNA 

during the digestive process. Therefore it appears worthwhile to continue pursuing creative 

methods for dealing with variability in gene copy number between food species, despite the 

challenges that it poses. 

 Due to the inherent variability involved in amplicon sequencing diet analysis, a logical 

next step is to begin sequencing food tissue mixes in other study systems to better understand the 

magnitudes of system-specific biases. This approach will make it clear whether a quantitative 

interpretation of amplicon sequence proportions is justified and/or accurate for each study 

system. In our study, we knew consumers’ diet and could therefore create a tissue mix which 

corresponded directly to the expected sequence proportions of the scat samples. Studies of wild 

animals will require an alternative approach. One possibility could be to create a set of tissue mix 

standards for the consumer, in which 50% of each tissue mix is made up of a variable food 

species that occurs in the diet, and 50% is made up of a control species that is common to all of 

the standards. For example, using pollock as a control species we could create three tissue mix 

standards for this study system: (50% capelin, 50% pollock); (50% herring, 50% pollock); (50% 

mackerel, 50% pollock). In this case, any deviance in the variable fish sequence proportions 

from 50% would be indicative of a species-specific bias, and the difference could be used to 

create a species correction factor. In cases when there are many different food species, a 

representative of each food family could potentially be used for the tissue mix standards to create 

family-specific corrections. The use of two species in equal proportions should increase the 

accuracy of correction factors since deviations can be measured more accurately when a food 

item is not a minor component of the mix. However, this design would not account for any 

potential interactive effects between food species DNA. 

 The effectiveness of a food tissue mixture for bias correction is reliant on the tissue mix 

and scats being treated identically during the methodological protocol. While we maintained 
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consistency in most aspects of our protocol, it is important to note that the two amplicon pools 

(scats and tissue mix) received different MID sequences during sequencing adapter ligation, 

which we used to bioinformatically differentiate between amplicon pool sequences. The MIDs 

may have biased the sequence proportions between the amplicon pools; although preliminary 

work suggested that MID bias is not highly influential in this study system. Future investigations 

will determine the preferred approach to differentiate between sequences of different amplicon 

pools, while minimizing potential biases. 

 

3.5.2 Proxies for digestion bias 

 The digestion correction factors we derived in this study were based on the bias 

introduced by differential prey species digestion, which we defined as the difference between the 

tissue mix proportions (that account for methodological biases and template DNA density) and 

the scat DNA sequence proportions. Using this approach, it is only possible to calculate digestion 

bias when consumer diet is known and a tissue mix has also been sequenced with scat samples. 

Compared to the TCFs, we found the DCFs were relatively small in magnitude, indicating that 

the digestion bias was the lesser of the two sources of bias and had a smaller impact on 

proportional diet estimates. This is counter to a previous captive feeding study which determined 

that digestion bias is likely the largest source of bias in the DNA-based quantification of little 

penguin diet (Deagle et al. 2010). These conflicting results suggest there may be large variation 

in the impacts of biasing factors between study systems. 

 In the current study we detected a strong negative relationship between the digestion bias 

correction factor and the percentage of lipid in the prey fish tissues. This implies that high lipid 

content in the fish consumed is associated with reduced breakdown of fish tissue during the 

digestion process, thereby preventing mtDNA degradation. Two independent harbour seal 

digestion studies lend support for this idea (Stanberry 2003; Trumble et al. 2003). In these 

studies captive harbour seals were fed fish species of differing lipid content, and proximate 

composition analysis was performed on both the prey and the resultant scats to calculate 

component digestibility. Both studies found a reduction in protein digestibility with increased 

lipid content of the prey fish, which likely results in diminished tissue DNA degradation (Figure 

3.5). 



57 

 

 

 
Figure 3.5 The relationship between prey fish lipid content and protein digestibility in harbour seals. Data are 

from two separate digestive efficiency studies in which captive seals were fed fishes of varying lipid content 

(Stanberry 2003; Trumble et al. 2003) 

 

 In our experiment, a correction factor derived from the relationship between prey percent 

lipid and DCFs would make it possible to generate a perfect average diet estimate from the scat 

sequences. If additional work validates this hypothesis for harbour seals it will be necessary to 

evaluate the natural variability in prey fish lipid content, which can fluctuate both seasonally and 

geographically. Despite this variability, it may be possible in the future to create a categorical 

correction factor for lipid that improves diet estimate accuracy (e.g. for high, medium, and low 

lipid prey) if the order of lipid percentages is relatively consistent for prey species (e.g. herring > 

mackerel > capelin, etc.). A similar approach to this has been used to correct for the effects of 

digestion on the sizes of fish otoliths recovered from pinniped scats (Tollit et al. 2004). 

 

3.5.3 Applicability to other study systems 

 Although the observed relationships between biases and their potential proxies are likely 

to be specific to this study system, the overall study design and research approach are certainly 

generalizable to other systems. The sequencing of food tissue control materials alone can 

indicate the degree to which quantitative diet estimates based on DNA sequence counts may be 

biased by factors such as PCR bias and variable template DNA density . In cases where PCR 
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primer binding sites vary considerably between target species (e.g. Razgour et al 2011), or when 

blocking probes may impact amplification of some prey (Piñol et al. 2013), food tissue 

experiments are particularly relevant in order to assess these potentially strong technical biases. 

Similarly, this type of analysis seems important when gene copy number varies considerably 

between target species (Darby et al. 2013). If the use of control materials is combined with a 

captive feeding study, food-specific digestion biases can be deduced in other model systems, and 

food properties that may influence digestion can be assessed. Clearly, substantial additional work 

must be conducted before we can confidently use DNA sequence count data to infer food 

biomass proportions from diet samples. However, this study presents a rational framework to 

begin identifying the most important sources of bias in each study system, and testing creative 

ways to correct for those biases. 

 

3.5.4 Conclusions 

 DNA-based diet analysis is a rapidly evolving methodology that offers substantial 

advantages over existing diet techniques, and is being used to address heretofore unanswerable 

questions in trophic ecology. While the speed and taxonomic accuracy of the methods are clear, 

the limitations of available tools and potential to collect accurate quantitative data have not been 

thoroughly examined. Using prey tissue mixes and captive harbour seals fed a known diet, we 

were able to quantify substantial biases introduced by differences in template DNA copy number 

between prey species and biases attributable to differential prey digestion. The correction factors 

we used to account for those sources of bias considerably improved the diet estimates, 

suggesting that accurate diet estimates can be obtained using this approach. Tissue corrections 

could feasibly be developed in almost any dietary study using a set of standards derived from 

food tissue mixes that are sequenced in parallel with diet samples. We have also shown the 

possibility that proxies based on prey attributes might account for species-specific differences in 

survival of DNA during digestion. The extent to which differential food digestion affects 

quantitative diet estimates from amplicon sequences will need to be further evaluated using 

captive feeding trials in multiple study systems. Given the wide adoption of next-generation 

sequencing as an approach to study the diets of various taxa, the potential to obtain accurate 

quantitative data based on sequence counts deserves further investigation.  
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Chapter 4: Quantitative DNA metabarcoding: improved estimates of species 

proportional biomass using correction factors derived from control material 

 

4.1 Summary 

DNA metabarcoding is a powerful new tool for the simultaneous characterization and 

quantification of species assemblages using high-throughput amplicon sequencing. The utility of 

DNA metabarcoding for quantifying relative species abundances is currently limited by both 

biological and technical biases which influence sequence read counts. We tested the idea of 

sequencing 50/50 mixtures of target species and a control species in order to generate tissue 

correction factors (TCFs) that account for multiple sources of bias and are applicable to field 

studies. Tissue mix experiments revealed a positive relationship between mass % and DNA 

sequences %, but species present in high mass proportion tended to be underestimated and those 

in low mass proportion tended to be overestimated. 50/50 TCFs applied to mixtures of 3 species 

greatly improved mass estimates from DNA sequence reads: average per species error was 19 ± 

8% (uncorrected), 3 ± 1% (50/50 TCF corrected). A harbour seal (Phoca vitulina) prey library of 

50/50 mixtures revealed the range of potential correction factors for seal prey species (50/50 

TCFs = 0.68 - 3.68). Corrections applied to a subset of seal scat samples indicated that individual 

sample estimates were more impacted by 50/50 TCFs (Δ 6.7 ± 6.6%) than population level 

estimates (Δ 1.7 ± 1.2%). Results suggest that the 50/50 TCF approach offers an effective means 

by which researchers can correct for biases in DNA metabarcoding studies. The decision to 

apply 50/50 TCF corrections will be influenced by the feasibility of creating tissue mixtures for 

the target species, and the level of accuracy needed to meet research objectives. 

 

4.2 Introduction 

High-throughput DNA sequencing is currently changing the way that biologists 

characterize assemblages of organisms, ranging from human intestinal microbes to whole 

eukaryotic communities (Eckburg et al. 2005; Bik et al. 2012; Taberlet et al. 2012a; Willerslev 

et al. 2014). Traditional methods for characterizing groups of organisms generally involved 

acquiring a representative sample of a community and then individually identifying each 

organism in the sample using a classification protocol such as a reference collection or 
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taxonomic key. In the burgeoning field of DNA metabarcoding, genetic markers that can be 

recovered from broad groups of taxa are used to simultaneously characterize all species, or 

higher level taxonomic groups, contained in an environmental sample using high-throughput 

DNA amplicon sequencing (Taberlet et al. 2012b; Cristescu 2014). These new tools have 

allowed insight into systems that were largely unexplored due to methodological limitations, and 

have redefined the current level of understanding for several systems (Fonseca et al. 2010). 

While DNA metabarcoding has many clear advantages, the process of characterizing 

groups of organism from amplified DNA sequences can be quite complex, and requires careful 

study design and data analysis in order to avoid a biased interpretation (Creer et al. 2010; 

Pompanon et al. 2012). For example, chimeric sequences, contaminants and clustering 

algorithms can bias even the most basic outputs of DNA metabarcoding studies such as species 

richness (Coissac et al. 2012; Nguyen et al. 2014). Risk of biased interpretation is particularly 

apparent when researchers attempt to glean insight from the proportions of species DNA 

sequences that result from amplicon sequencing (Zhou et al. 2011; Deagle et al. 2013). 

Differences in sequence read abundance between species are often used to infer the relative 

differences in mass or numerical abundance of species contained in a sample (Deagle et al. 2009; 

Soininen et al. 2009; Kowalczyk et al. 2011; Murray et al. 2011; Brown et al. 2012). For 

example, in a fascinating recent application of metabarcoding, DNA sequence reads were used to 

document changes in the proportional biomass of plant taxa over > 50 thousand years based on 

eDNA in sediments and preserved megafauna diet samples (Willerslev et al. 2014). While such 

quantitative interpretation can vastly improve the value of DNA metabarcoding data to 

ecologists, numerous studies have documented biases that strongly impact sequence read 

abundance (Amend et al. 2010; Berry et al. 2011; Pinto and Raskin 2012; Deagle et al. 2013). 

Previous attempts to control biasing factors in DNA metabarcoding studies have 

primarily focused on correcting for a single source of bias, or altering protocol steps that are 

known to introduce bias (Berry et al. 2011; Shokralla et al. 2012; Lundberg et al. 2013; Zarzoso-

Lacoste et al. 2013). The objective of several recent bias correction efforts has been to account 

for species differences in template DNA copy number or DNA density (i.e. template copy 

number per gram of organism tissue) that cause certain species to be overrepresented and others 

underrepresented (Kembel et al. 2012; Angly et al. 2014). For example, Angly et al. (2014) have 
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documented variation in 16S rRNA gene copy number across microbial lineages and used those 

data to correct amplicon counts in microbial community profiles. Copy number corrections and 

bias mitigating alterations to lab protocols have proven useful for enhancing the quantitative 

capabilities of DNA metabarcoding, however the presence of other technical factors often still 

prevents investigators from using DNA sequence proportions to infer relative organism mass or 

abundance. 

An alternative approach to correcting for individual biases is to create control materials 

for target organisms, which when sequenced alongside environmental samples can be used to 

create correction factors that account for multiple sources of bias simultaneously (Huggett et al. 

2013; Thomas et al. 2014). Using control materials, it is possible in a single correction step to 

account for biases due to copy number, DNA extraction, PCR amplification, DNA sequencing, 

and bioinformatic filtering. However, the challenge in implementing control material correction 

factors comes in the transition from the laboratory to the field, where the goal is to characterize 

samples of unknown composition. For example, a recent metabarcoding diet study with seals 

demonstrated that by sequencing a fish tissue mixture that matched the diet of captive seals, food 

tissue correction factors (TCFs) can be calculated (Thomas et al. 2014). When the TCFs were 

applied to prey DNA sequences from seal scats, the sequence percentages were much better 

aligned with seal diet percentages. These results have limited applicability, however, because 

they required a priori knowledge of the seal’s diet in order to calculate TCFs. 

A more generic approach was proposed which involves creating a prey library of tissue 

mix standards that could be used to correct sequence counts from samples of unknown 

composition. Such a prey library would consist of 50/50 mixtures of food tissues, wherein one 

species is held constant (i.e. present in all mixtures) and the other species is varied between 

mixes. Relative differences in the percentages of DNA sequences from mixtures would thus 

indicate the species-specific bias of the variable food species, and could be used to create TCFs 

useful for field studies. However, these 50/50 TCFs from a prey library would only be effective 

with samples of unknown composition if they proved to be consistent regardless of input 

proportion, and remained consistent regardless of species composition (i.e. no interactive effects 

between species).  
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Our objective was therefore to test the feasibility of using 50/50 TCFs derived from a 

prey library of tissue mixes to improve the relationship between mass percentages and DNA 

sequence percentages. Here, we create a model system using four fish species tissues, treating 

one species as the control and calculating TCFs from 50/50 mixtures of the control fish and the 

other three species. We then demonstrate how 50/50 TCFs can be used to correct sequence 

percentages from other mixtures of variable mass composition. We also generate a small prey 

library for Pacific harbour seals (Phoca vitulina) to evaluate the range of potential correction 

factors that would be produced using the 50/50 TCF method. Finally, we apply the prey library 

derived correction factors to a subset of wild seal scat samples to determine the impact of 50/50 

TCF correction in a real world scenario. Although this study is focused on biases involved in seal 

diet analysis, the general framework for implementing 50/50 TCFs is widely applicable to any 

metabarcoding study that can feasibly create control mixtures of the target organisms (e.g. 

mixture of bacterial cultures, target insect species, etc.). 

 

4.3 Materials and methods 

4.3.1 Evaluation of tissue correction factors 

Our first goal was to evaluate the feasibility of using 50/50 TCFs to improve the 

relationship between mass percentages and DNA sequence percentage. This involved testing 

whether the TCF for a given species remained consistent regardless of: a) input proportions (i.e. 

test if the TCF calculated for species x using species y as a control remained the same regardless 

of the relative proportion of x to y by mass in the tissue mixture), and b) species composition 

(i.e. test if the TCFs calculated using a given control species remains effective at correcting the 

sequence proportions in a sample mixture, regardless of the species composition of the mixture). 

If the TCFs are dependent on species composition, this would likely render any attempt at 

species correction factors unfeasible due to the sheer number of potential species combinations 

that could occur in a diet sample. 

An experiment was set up involving four species: Pacific herring (Clupea pallasii), 

capelin (Mallotus villosus), Atka (Pleurogrammus monopterygius) and mackerel (Scomber 

japonicas), where mackerel was used as the control. Pairwise tissue mixtures were created 

including one of the test species (herring, capelin or Atka) and the control species (mackerel), 
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where the mass percentage of the test species in each paired mixture progressively increased 

from 20% to 80% (e.g. the pairwise mass ratio combinations of herring and mackerel were 

20:80, 40:60, 50:50, 60:40 and 80:20).  

Tissue mixtures were created in three homogenization steps. First, representative samples 

of each fish species were chopped into pieces and individually ground using a standard meat 

grinder. Second, the coarse ground fish tissue was further homogenized with a bladed food 

processor. At this stage, 2g of the variable “test fish” homogenate were combined with 2g of the 

“control fish” homogenate in a 20ml vial. Lastly, 95% ethanol was added to the samples for 

preservation and they were processed with a Fisher Scientific PowerGen homogenizer, creating a 

finely ground ethanol/fish slurry. DNA was extracted, amplified and sequenced from the 

homogenized mixture, and the sequence proportions of the test and control species were 

calculated (see ‘Genetic analysis’ below: section 4.3.4).  

Species-specific TCFs were calculated for each tissue mixture similarly to those in 

Thomas et al. (2013), but adapted for use with a control species: 

௣,௧ܨܥܶ ൌ 	
ሺܵ௖ ൈ ሻ	௧ܯ
ሺܵ௧ ൈ	ܯ௖ሻ

 

 

where t is the test species, c is the control species, Mt and Mc are the mass percentages (or grams) 

in the tissue mix of the test and control fish respectively. St and Sc are the DNA sequence 

percentages (or counts) from the tissue extraction of the test and control fish respectively, and p 

is the percentage of the test species in the mixture (i.e.   100t t cp M M M   ). Using this 

equation, a correction factor can be calculated for any paired ratio of test fish and control fish 

after sequencing. TCFs greater than 1 indicate that a species is underestimated relative to the 

control, and TCFs less than 1 indicate a species is overestimated. Note that ܶܨܥହ଴,௧ denotes what 

we have termed the 50/50 TCF for species t.  

The overall process of estimating 50/50 TCFs for a set of test species and a given control 

species is illustrated in Figure 4.1. 
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Figure 4.1 Six steps involved in calculating tissue correction factors (TCFs) from a prey tissue library: 1) 

homogenization of the control fish and test fish species, 2) creation of 50%/50% mixtures by mass of the 

control fish and various test fish homogenates, 3) Illumina amplicon sequencing of tissue mix DNA, 4) 

bioinformatic calculation of species DNA sequence proportions, 5) calculation of 50/50 TCFs, and 6) 

numerical TCFs resulting from the prey tissue library. Colors indicate different fishes: salmon (red), rockfish 

(blue), sole (green), mackerel (yellow).  
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After calculating TCFs for all mixtures of the test and control species, we evaluated 

whether, for a given test species t, ܶܨܥ௣,௧ was roughly the same for all values of p. In other 

words, are correction factors the same regardless of the input proportion used, or do they vary at 

values greater or lesser than 50%. 

 Next, to investigate whether the TCFs remained consistent regardless of the species 

composition in the mixture being corrected, 50/50 TCFs were used to correct the DNA 

sequences resulting from the following tissue mixtures: (1) all pairwise mixtures of the three test 

species, where the mass percentage of one species progressively increased from 20% to 80%, 

similar to mixtures with the control (e.g. the mass ratio combinations of herring and capelin were 

20:80, 40:60, 50:50, 60:40 and 80:20); (2) three-way mixtures of herring, capelin and Atka in the 

ratios of 33:33:33 and 60:20:20. Two replicates of each mass ratio and species combination were 

made to evaluate technical variability.  

To correct the sequence counts from a given sample using 50/50 TCFs, the count for each 

species can simply be multiplied by the appropriate species-specific TCF: 

50,
ˆ

t t tN N TCF   

where tN  and ˆ
tN  are the observed and corrected sequence counts from the sample for species t 

respectively. The corrected sequence counts can then be expressed as percentages for 

comparison with the input mass percentages (i.e. ˆ ˆˆ t t ss S
p N N


   where S denotes the set of all 

species in the sample). 

 

4.3.2 Development of a harbour seal prey library 

The next experiment consisted of calculating 50/50 TCFs for a range of harbour seal prey 

species in order to build up a library of correction factors. The prey library was not intended to 

create a complete set of TCFs for harbour seal prey. Rather, it was designed to assess the range 

of potential correction factor values, and to see if there are similarities in bias between closely 

related prey species.  

Fresh whole samples of fish species that are known to occur in the diets of harbour seals 

in British Columbia were collected opportunistically from one of two sources: 1) as bycatch in 

annual trawl surveys conducted by the Department of Fisheries and Oceans Canada, or 2) 
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purchased directly from fishermen shortly after landing at their port of call. To prevent water loss 

that could affect mass ratios, all samples were sealed in zip-type freezer bags and immediately 

frozen after collection in a non-defrosting freezer at -20°C.  

For each of the prey species in the sample collection (n=18), tissue mixtures were made 

up comprising 50% of the prey species and 50% of the control species, where mackerel was 

again used as the control. The process described in the previous section and illustrated in Figure 

4.1 was used to calculate 50/50 TCFs for each tissue mixture. When possible, four replicate 

samples were made for each prey species in the library. Two replicates were made from 

homogenized tissue of multiple individual fish of the test species, and the other two contained 

tissues only from one individual fish each. The purpose of this design was to evaluate variability 

in the resulting sequence percentages that is due to, a) technical variation in sample processing, 

and b) biological variation between individual fish such as mtDNA density in tissue. 

 

4.3.3 Wild harbour seal scat samples 

The harbour seal scats we collected were part of a larger study directed toward assessing 

the impacts of harbour seals on salmon populations in British Columbia, Canada (Chapter 5). At 

known harbour seal haulout sites, individual seal scats were collected into a 500ml plastic jar 

lined with a 126µm nylon mesh paint strainer. Samples were either preserved immediately in the 

field by adding 300ml 95% ethanol to the collection jar, or they were taken to the lab and frozen 

at -20°C within 6 hours of collection. Samples were sequentially thawed and filled with ethanol 

before being manually homogenized inside the paint strainer to separate the scat matrix material 

from hard prey remains (e.g. bones, cephalopod beaks). The paint strainer containing prey hard 

parts was then removed from the jar leaving behind the ethanol preserved scat matrix for genetic 

analysis. 

The harbour seal prey library we generated did not contain all known diet species for 

harbour seals in British Columbia because our methodological evaluations were done prior to the 

analysis of all scat samples. Therefore, to assess the impacts of 50/50 TCFs on seal diet estimates 

we selected a subset of 10 scat samples that contained only prey species that were included in 

our library, thereby allowing for 50/50 TCF correction of all species represented. 
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4.3.4 Genetic analysis 

Tissue mixes and scat samples were subsampled, centrifuged and dried to remove ethanol 

prior to DNA extraction. Tissue extractions were done using the QIAGEN DNeasy Blood & 

Tissue Kit, and scat extractions were done with QIAGEN QIAamp DNA Stool Mini Kit 

according to the manufacturer’s protocols. For additional details on the extraction process see 

Deagle et al. (2005) and Thomas et al. (2014).  

The metabarcoding marker we used to quantify fish proportions was a 16S mtDNA 

fragment (~ 260 bp) previously described in Deagle et al. (2009) for pinniped scat analysis. We 

used the combined Chord/Ceph primer sets: Chord_16S_F 

(GATCGAGAAGACCCTRTGGAGCT), Chord_16S_R (GGATTGCGCTGTTATCCCT), 

Ceph_16S_F (GACGAGAAGACCCTAWTGAGCT), and Ceph_16S_R 

(AAATTACGCTGTTATCCCT). This multiplex PCR reaction is designed to amplify both 

chordate and cephalopod prey species DNA. 

To take full advantage of sequencing throughput, we used a two-stage labeling scheme to 

identify individual samples that involved both PCR primer tags and labeled MiSeq adapter 

sequences. The open source software package EDITTAG was used to create 96 primer sets each 

with a unique 10bp primer tag and an edit distance of 5. This indicates that 5 insertions, 

substitutions, or deletions would have to occur in order to cause one sample’s sequences to be 

mistaken for another (Faircloth and Glenn 2012). 

To ensure that all PCR conditions were identical to those used to amplify seal scat DNA 

in a related study, a blocking oligonucleotide was included in the all PCRs to limit amplification 

of seal DNA (Vestheim& Jarman 2008). The oligonucleotide (32 bp: 

ATGGAGCTTTAATTAACTAACTCAACAGAGCA-C3) matches harbour seal sequence 

(GenBank Accession AM181032) and was modified with a C3 spacer, so it is non-extendable 

during PCR (Vestheim and Jarman 2008).  

All PCR amplifications were performed in 20 μl volumes using the Multiplex PCR Kit 

(QIAGEN). Reactions contained 10 μl (0.5 X) master mix, 0.25 μM of each primer, 2.5 μM 

blocking oligonucleotide and 2 μl template DNA. Thermal cycling conditions were: 95 °C for 15 

min followed by 34 cycles of: 94 °C for 30 s, 57 °C for 90 s, and 72 °C for 60 s.  
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Amplicons from 96 individually labeled samples were pooled by running all samples on 

1.5% agarose gels, and the luminosity of each sample’s PCR product was quantified using Image 

Studio Lite (Version 3.1). In order to combine all samples in roughly equal proportion 

(normalization), we calculated the fraction of each sample’s PCR product added to the pool 

based on the luminosity value relative to the brightest band.  

Sequencing libraries were prepared from pools of 96 samples using an Illumina TruSeqTM 

DNA sample prep kit which ligated uniquely labeled adapter sequences to each pool. Libraries 

were then pooled and DNA sequencing was done on Illumina MiSeq using the MiSeq Reagent 

Kit v2 (300 cycle) for SE 300bp reads. Samples for this study were sequenced on multiple 

different runs as part of the larger study; however, typically between 4 and 6 libraries (each a 

pool of 96 individually identifiable samples) were sequenced on a single MiSeq run.  

Sequences were automatically sorted (MiSeq post processing) by amplicon pool using the 

indexed TruSeqTM adapter sequences. FASTQ sequence files for each library were imported into 

QIIME for demultiplexing and sequence assignment to species (Caporaso et al. 2010). For a 

sequence to be assigned to sample, it had to match the full forward and reverse primer sequences, 

and match the 10 bp primer tag for that sample (allowing for up to 2 mismatches in either 

primers or tag sequence). 

To assign DNA sequences to a fish species, we created a custom BLAST reference 

database of 16S sequences using an iterative process. First, using a list of the fish species of 

Puget Sound we searched Genbank for the 16S sequence fragment of all fishes known to occur in 

the region (71 fish families 230 species) (DeVaney and Pietsch 2006; Benson et al. 2012). 

Reference sequences for each prey species were included in the database if the entire fragment 

was available, and preference was given to sequences of voucher specimens. Genbank contained 

16S sequences for 192 of the 230 fish species in the region, and the remaining 38 species were 

mostly uncommon species unlikely to occur in seal diets. 

Next, the DNA sequences that were assigned to scat or tissue samples were clustered 

with USEARCH (similarity threshold = 0.99; minimum cluster size = 3; de novo chimera 

detection), and a representative sequence from each cluster was entered in a GenBank nucleotide 

BLAST search (Altschul et al. 1990; Edgar 2010). If the top matching species for any cluster 

was not included in the existing database (or the sequence differed indicating allelic variation), 
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the top matching entry was put in the reference database. The procedure was repeated with every 

new batch of sequence data to minimize the potential for incorrect species assignment or prey 

species exclusion. 

For all DNA sequences successfully assigned to a sample, a BLAST search was done 

against our custom 16S reference database. A species was assigned to a sequence based on the 

best match in the database (threshold BLASTN e-value < 1e-20 and a minimum identity of 0.9), 

and the proportions of each species’ sequences were quantified by sample after excluding 

harbour seal sequences or any identified contaminants (Caporaso et al. 2010). 

 

4.4 Results 

4.4.1 Evaluation of tissue correction factors 

The experiment to evaluate the feasibility of using 50/50 TCFs with mackerel as the 

control species revealed several interesting trends (Figure 4.2). First, there was a positive 

relationship for all test species between the mass proportion of the species in a tissue mix and the 

DNA sequence percentage of that species (Figure 4.2a). However when a species was present in 

a high proportion (i.e. > 50% by mass) it was generally underestimated by DNA sequence 

percentages, whereas species present in low proportion (i.e. < 50% by mass) were overestimated. 

Accordingly, the TCFs calculated for a given test species differed depending on the input 

proportion of the test species in the tissue mix (Figure 4.2b). 
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Figure 4.2 (a) Percentage of DNA sequences recovered from tissue mixes of 3 test species (Atka, capelin, and 

herring) mixed individually with mackerel (the control species) in ratios of 20:80, 40:60, 50:50, 60:40, and 

80:20 by mass. Two tissue mixes were analyzed for each test species and input ratio. (b) The tissue correction 

factors (TCFs) calculated for each test species and input ratio. In both plots, the x-axis displays the 

percentage of the test species by mass in the tissue mix. 

 

Although the TCFs for a given test species were proportion-dependent, they were 

reasonably consistent for input percentages between 40% and 60% (Figure 4.2b). Moreover, in 

all mixes, the ranked species bias was consistent i.e. herring was always the most overestimated, 

followed by capelin, then Atka was the least abundant based on sequence percentages. These two 

factors suggest that using 50/50 TCFs to correct sequence proportions from unknown sample 

mixtures may still be reasonable. 

Using mackerel as the control species, the 50/50 TCFs (mean and SD of the two 

estimates) for the three test species were: herring (TCF = 0.18 ± 0.00), capelin (TCF = 0.64 ± 

0.03), Atka (TCF = 0.76 ± 0.06). Applying these correction factors to DNA sequence counts 

from the pairwise tissue mixtures of these three test species reduced the average estimate error 

from 21 ± 15% (uncorrected) to 9 ± 6% (50/50 TCF corrected) (Figure 4.3). For the two tissue 

mixtures that combined all three test species, the TCFs improved estimates even more than in 

pairwise mixtures: average estimate error 19 ± 8% (uncorrected) and 3 ± 1% (50/50 TCF 

corrected) (Figure 4.4). 
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Figure 4.3 Proportion of DNA recovered from a) herring mixed with Atka, b) Atka mixed with capelin, and c) 

capelin mixed with herring in pairwise ratios of 20/80, 40/60, 50/50, 60/40, and 80/20. Black dots indicate the 

uncorrected sequence percentages; blue dots indicate DNA percentages after the 50/50 TCFs from mackerel 

mixtures have been applied to both test species; and red dots indicate percentages after both 50/50 TCFs and 

the proportion-dependent TCFs (Fig. 5) have been applied to both species. 

 

Since we observed a strong proportion-dependent bias on sequence percentages in the 

pairwise mixtures (i.e. high proportion species underestimated and low proportion species 

overestimated), we also explored the possibility of using proportion-dependent TCFs. To do so,  
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Figure 4.4 Tissue correction factors applied to DNA sequence percentages obtained from mixtures of three 

test species (herring, capelin, and Atka) in the interaction experiment. Black bars indicate the species mass 

percentage in the tissue mixture sequenced: left (Herring/Capelin/Atka: 33/33/33%), right 

(Herring/Capelin/Atka: 60/20/20%). Black dots indicate average uncorrected DNA sequence percentage of 

two replicates, and error bars indicate standard deviation. Red dots show sequence percentages after 50/50 

chub mackerel TCFs have been applied to all three test fish species. Blue dots indicate average values after 

both 50/50 TCF correction and the proportion-dependent correction factors have been applied. 

 

we calculated proportion-dependent TCFs (PTCFs) using the 50/50 corrected sequence counts in 

place of the original sequence counts for the test species. We found that the relationship between 

the logarithm of the PTCFs and the input mass percentages for a given test species could be well 

approximated by a linear model (Figure 4.5). Furthermore, the lines did not differ significantly 

between the 3 test species (F-statistic = 0.37, df =4,24; p-value = 0.83), with the common line 

estimated to be: 

log
10

PTCF
p   0.590.012 p

 PTCF
p
100.590.012 p
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Figure 4.5 Linear equation for the log transformed proportion-dependent tissue correction factors (PTCFs), 

plotted against the 50/50 TCF corrected sequence percentages of all pairwise mixtures combining test fishes 

(Herring, Capelin, Atka) with the control fish (Mackerel). This equation can be used to derive the proportion-

dependent correction factor for any species, using the 50/50 TCF corrected sequence % for that species in a 

mixture. PTCFs can then be applied in a final correction step to account from proportion dependent biases 

(see results section for details). 

 

One replicate mixture of herring and mackerel resulted in a clear outlier relative to all 

other mixtures; this point was excluded from the consensus line calculation. We applied the 

appropriate PTCF as estimated from this linear equation to the 50/50 corrected sequence 

percentages. Specifically, if the 50/50 TCF corrected sequence count and percentage for test 

species t were ˆ
tN  and ˆ tp  respectively, then we calculated the proportion-dependent corrected 

count ( tN ) as:  

 



74 

 

PTCFs mildly improved estimates for the pairwise test fish mixtures, but increased 

relative variability: average estimate error = 9 ± 6% (50/50 TCF corrected), changed to 5 ± 5% 

(proportion corrected) (Figure 4.3). However, proportion-dependent correction substantially 

reduced the accuracy of estimates for mixtures that included all three species: average estimate 

error = 3 ± 1% (50/50 TCF corrected), changed to 8 ± 5% (proportion corrected) (Figure 4.4). 

 

4.4.2 Seal prey library 

All fish species in the prey library tissue mix experiment were successfully identified in 

the bioinformatic sequence assignment pipeline. Within a prey species, there was generally little 

variability in the DNA sequence percentages between biological and technical replicate samples 

(Figure 4.6). For example, the average amount that a species’ DNA sequence % deviated from 

the tissue mix mass % was ca. 9.5% for prey library species. This is in contrast to the average 

deviation between two replicate samples containing multiple individuals (2.6%), and the 

deviation between samples of individual fishes of the same species (3.9%) (Figure 4.6). 

The 50/50 TCFs calculated for each species in the library using mackerel as the control 

ranged from 0.68 to 3.68. Species that required minor correction relative to mackerel included 

Pacific sardine (TCF = 0.87 ± 0.03), American shad (TCF = 0.98 ± 0.05), juvenile Pacific 

herring (TCF = 1.32 ± 0.11), northern anchovy (TCF = 1.13 ± 0.03), whitebait smelt (TCF = 

1.00 ± 0.03), eulachon (TCF = 1.13 ± 0.04), lingcod (TCF = 1.17 ± 0.07), and spiny dogfish 

(TCF = 0.92 ± 0.01). 

Rockfishes, sand sole, and cods (including hake) were generally underestimated relative 

to mackerel, with juvenile pollock being the most underestimated species: copper rockfish (TCF 

= 2.08 ± 0.17), quillback rockfish (TCF = 1.90 ± 0.04), canary rockfish (TCF = 1.26 ± 0.07), 

sand sole (TCF = 3.09 ± 0.11), Pacific hake (TCF = 1.56 ± 0.23), and juvenile walleye pollock 

(TCF = 3.68 ± 0.06).  

The salmonids were variable, with coho salmon being the most overestimated species 

relative to mackerel: chum salmon (TCF = 0.96 ± 0.05), coho salmon (TCF = 0.68), and pink 

salmon (TCF = 1.54 ± 0.05). Only one cephalopod species was tested, which was underestimated 

and exhibited relatively high variability between replicates: market squid (TCF = 2.90 ± 0.58). 
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Figure 4.6 Proportions of DNA sequences counted after Illumina amplicon sequencing of tissue samples that 

contained 50% of each test species by mass and 50% chub mackerel (the control species). Red and blue dots 

indicate replicate samples of those species for which individual fishes were sequenced (indicating biological 

replicate variation). Black dots and error bars (SD) are samples from multiple combined individual fish of 

the test species (indicating technical replicate variation). 
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Figure 4.7 Harbour seal scat samples collected in British Columbia, Canada that were comprised of only prey 

species included in our 50/50 tissue library. Black bars indicate the uncorrected percentages of species DNA 

sequences per sample. Red bars indicate sequence percentages after 50/50 TCFs from the prey library were 

applied to sequence counts for each sample. The bottom right panel displays the population average estimate 

for all ten samples combined. 
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4.4.3 Applying 50/50 TCFs to seal scats 

50/50 TCFs derived from the prey library were applied to 10 wild harbour seal scat 

samples comprised of only those prey species represented in the prey library (Figure 4.7). For 

individual samples the average change in diet % for any species was 6.7 ± 6.6% after applying 

50/50 TCFs to all prey species. The maximum amount that any prey species diet percentage 

changed was 23.9% for walleye pollock, which required significant positive correction (Figure 

4.7, sample 5). By contrast, population level diet percentages calculated by averaging each 

species DNA % across all samples were less affected by 50/50 TCFs, with the average change 

per species being 1.7 ± 1.2%, and a maximum change of 3.8% for walleye pollock (Figure 4.7, 

population average). 

 

4.5 Discussion 

DNA metabarcoding is a powerful tool for the simultaneous characterization of multiple 

species in an environmental sample, with a seemingly endless range of potential applications. 

However to fully take advantage of the data produced by NGS platforms in metabarcoding 

studies, a practical method is needed to control the biasing factors that are known to affect DNA 

sequence read abundance. Our testing of species-specific correction factors from tissue mixtures 

of the target organisms (fish tissue homogenates) produced several results that will likely be of 

interest to researchers using sequence read abundance to quantify relative proportions of species. 

First, we found that increasing a species mass proportion results in a consistently greater 

proportion of DNA sequences, supporting the idea that sequence read abundance can be used as 

a measure of relative mass composition. There was however a strong proportion-dependent 

effect on sequence read abundance, such that species present in high mass proportion tended to 

be underestimated, and those in low mass proportion were overestimated. A similar finding was 

reported by Kembel et al. (2012) while applying gene copy number corrections to empirical 

environmental data sets. They noted that gene abundances (microbial 16S sequence reads) were 

generally higher for the rarest taxa, and lower for the most abundant taxa relative to estimated 

organism abundances. Our combined results suggests that the observed phenomenon may be 
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inherent to the data produced by next-gen amplicon sequencing, and should be considered in 

future metabarcoding studies. 

One potential explanation for the observed proportion-dependent bias is that template 

DNA available in high copy number during PCR is more likely to self-anneal rather than binding 

to PCR primers, which would partially inhibit amplification. In contrast, template DNA available 

in low concentration has a much lower probability of self-annealing because the single stranded 

fragments are more likely to encounter primers instead of the complimentary DNA strand. Thus, 

in our simple pairwise mixtures of two fish species DNA, it is conceivable that the PCR reaction 

for the high abundance species is less efficient than the same reaction for the low abundance 

species. This would cause prey species present in low biomass percentage to be overestimated 

and prey present in high biomass percentage to be underestimated. Our observation that this bias 

was less apparent in more complex mixtures (> 2 species) is also consistent with this 

explanation, as we would expect the problem of self-annealing to be limited to instances where 

there was an overwhelming difference between species template DNA concentration during 

PCR. 

The interaction experiment also provided an opportunity to test the effectiveness of 50/50 

TCFs calculated from mixtures of the test species (herring, capelin, Atka) and the control species 

(mackerel). In all instances, 50/50 TCFs improved the relationship between DNA sequences % 

and tissue mass % when applied to DNA sequence counts. After applying the corrections to 

sequencing results of the pairwise mixtures, the average estimate error was reduced from 21% 

(uncorrected) to 9% (50/50 TCF corrected). Most of the remaining error after 50/50 TCF 

correction was due to deviation in the high and low mass proportions, resulting from the 

proportion dependent effect (Figure 4.3). The effectiveness of the 50/50 TCFs was much more 

pronounced in the mixtures of all three test species, reducing the average estimate error from 

19% to 3% (a 6-fold reduction in average error) (Figure 4.4). This consistent accuracy 

improvement from 50/50 TCFs and the lack of an interactive effect between species suggests that 

50/50 TCFs would be a useful approach for increasing the accuracy of mass ratio estimates from 

field-based metabarcoding studies.  

We attempted to further reduce the remaining error by exploring the use of a proportion 

specific correction factor that would account for the proportion dependent effects we detected. A 



79 

 

highly consistent proportion-dependent relationship was observed for all three test-fish species in 

pairwise mixtures with mackerel, and we used the relationship to create a consensus proportional 

correction factor equation. The second-stage correction factor based on that relationship mildly 

improved estimates for the pairwise species mixes, but reduced the accuracy of estimates for the 

three-species mixtures. This suggests that the proportion dependent effect is less pronounced in 

more complex species mixtures, and proportion-based correction is likely not worth pursuing for 

application to field collected samples. 

In order to apply 50/50 TCFs in a metabarcoding study with field collected samples, a 

tissue library of potential target organisms would need to be generated, such as the seal prey 

library created in this experiment. As anticipated, 50/50 prey library sequencing resulted in 

substantial variation in the percentages of sequences recovered between different fish species 

(Figure 4.6). The fact that there was very little variability between replicate samples suggests that 

the biases detected (i.e. deviation from 50%) are indicative of true species-specific biases, and 

not due to individual variation or experimental error. Species of a common family tended to have 

similar correction factor values, supporting the notion that there is some phylogenetic structure to 

the biases detected (Angly et al. 2014).  

We demonstrated how the 50/50 TCF approach can be used in a field study by applying 

our prey library derived TCFs to sequence data from wild harbour seal scat samples. Our results 

suggest that the average degree of improvement from 50/50 TCFs that can be expected for any 

individual species in a sample is approximately 7% per diet species, although this will depend 

largely on the number of species and the magnitude of species differences. The degree of change 

to diet percentages can be substantial when co-occurring species that are present in significant 

proportion require opposing correction factors.  

However, the impact of 50/50 TCF correction was far less pronounced when samples 

were aggregated to create a population level diet estimate (Figure 4.7). The average change due 

to 50/50 TCF correction to any individual species in the population diet estimate was < 2%, 

indicating that there is a strong bias-mitigating effect of averaging samples when generating 

population diet estimates. These results imply that the choice of whether or not to apply 50/50 

TCFs in metabarcoding studies will likely be driven by the level at which proportion information 
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is needed (i.e. individual samples vs. aggregate estimates), and the degree of accuracy required to 

effectively answer the research questions. 

While 50/50 TCFs may provide a solution to multiple sources of bias in a single 

correction, there are other sources of bias that are not accounted for using this approach and 

require consideration. Most notably are biases introduced by differential degradation of species 

DNA due to either digestion (in the case of diet studies), or other degenerative processes 

responsible for degrading environmental DNA. A metabarcoding diet study with penguins 

suggested that differential DNA degradation due to digestion was the most significant cause of 

bias in the study system (Deagle et al. 2010). In those cases, additional bias correction efforts 

(e.g. Lipid correction) may be needed in order to achieve a highly accurate representation of 

mass proportion from DNA sequence counts of environmental samples (Thomas et al. 2014). 

 

4.5.1 When to use 50/50 TCFs 

In many DNA metabarcoding studies, the primary challenge is simply to detect all 

species present in an environmental sample, such as when samples consist of many 

phylogenetically dissimilar taxa that require multiple degenerate primers to achieve amplification 

of most species. In those circumstances it is likely unrealistic to expect accurate estimates of 

species proportion based on DNA sequence read abundances, and correction factors are likely 

not worth pursuing in that stage of methodological development. However, in study systems 

focused on a limited number of species which have conserved barcode priming regions, 50/50 

TCFs offer tremendous potential to improve proportional estimates by accounting for multiple 

sources of bias. The 50/50 TCF approach will be particularly useful when biases to sequence 

read abundance are substantial and the resulting species correction factor magnitudes are large. 

Even when it is not possible to generate a complete tissue library, a 50/50 TCF library consisting 

of a subset of key species could be used to screen for large species-specific biases and aid in the 

interpretation of sequencing results. 

For metabarcoding diet studies the goal is often to generate a population diet estimate 

from multiple individual diet samples, and the diet proportions of any individual sample are not 

especially important. Based on our results, the accuracy improvement to population diet 

estimates from 50/50 TCFs is subtle, and prey library derived 50/50 TCFs may not be worth the 
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effort unless high diet accuracy is needed. Small differences in population diet estimates can 

however lead to drastically different ecological conclusions. For example, over a 3-month period 

a difference of 2% Chinook salmon in the diets of 40,000 harbour seals in British Columbia 

could equate to a difference of 19 million juvenile Chinook salmon being consumed by the seal 

population. This implies that accurate population level diet information may be very important 

for this study system.  

The benefits of 50/50 TCFs will be most apparent when it is important to provide 

accurate proportional information for a single environmental sample, or when multiple replicate 

samples from a single location are used to characterize species composition. It is important here 

to distinguish between aggregates of replicate samples such as those employed in eDNA studies, 

versus population averages of many individual samples taken from separate animals or different 

sampling locations. Characterization of a single sampling site using DNA metabarcoding will be 

vulnerable to bias because estimates are less affected by the bias mitigating effects of averaging. 

Thus 50/50 TCFs will likely prove beneficial for researchers using DNA sequence read 

abundances to characterize species composition from a single environmental sample or 

collection location. 

 

4.6 Conclusion 

Quantitative inference based on DNA sequence counts is commonplace in the microbial 

ecology literature, although recent studies recognize the need to account for species differences 

in gene copy number that can largely impact estimates of relative abundance. Factors biasing 

sequence read proportions in most metabarcoding studies have until now limited analyses to 

descriptions of biodiversity, or at best, semi-quantitative estimates of the relative proportions of 

species. In this study we outline a method by which researchers can control for many of the 

biasing factors involved in DNA metabarcoding using 50/50 mixtures of the target species and a 

control species. Although this method does not account for all biases, the correction factors 

generated from the 50/50 tissue library greatly improved the relationship between DNA sequence 

read abundances and mass percentages, and could facilitate quantitative inquiry in future studies. 

The usefulness of 50/50 TCFs as a tool in DNA metabarcoding studies will ultimately be 
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dictated by the feasibility of creating tissue mixtures for the target species, and the level of 

accuracy needed to answer the research questions of interest. 
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Chapter 5: Species and life stage of salmon consumed by harbour seals can be 

estimated by combining DNA metabarcoding with morphological analysis of 

faecal samples 

 

5.1 Summary 

Knowledge of the species and life stage of fishes consumed by predators is important for 

understanding the impacts that predation may have on prey populations, but traditional methods 

for determining diets often cannot provide sufficient detail. We combined data from two diet 

analysis techniques (DNA metabarcoding and morphological prey ID) to quantify the species 

and life stages of salmon (Oncorhynchus spp.) consumed by harbour seals (Phoca vitulina) in the 

Strait of Georgia, Canada. A decision-tree approach was developed to merge the two data sets, 

using the best available information to assign salmon life stage. We applied this method to 1,258 

harbour seal faecal samples (scats) collected from estuaries, and compared the combined data to 

seal diets in the 1980s. Illumina sequencing of scat DNA produced an average of 1,227 prey 

DNA sequences per scat, and morphological analysis of recovered hard parts identified an 

average of 5.2 prey structures per sample. Consumption of salmon by harbour seals in the fall 

has increased substantially since the 1980s, consisting predominantly of adults of abundant 

species of low conservation concern (chum, pink, and sockeye salmon). However, the opposite 

was observed during spring when the seals targeted juvenile salmon of greater conservation 

concern (coho and Chinook), indicating selection for larger-bodied juvenile salmon. Our study 

suggests that hard-part techniques may underestimate salmon predation compared to DNA 

techniques. It also shows the usefulness of applying multiple diet analysis techniques in trophic 

ecology studies, and highlights the necessity of regularly updating predator dietary information 

because animal food habits are not static. 

 

5.2 Introduction 

Predators can have different net effects on ecological communities depending on the life 

stage of prey they consume (Hastings 1983, 1988). This is reflected by prey species often filling 

different ontogenetic niches as they grow and mature, and using different habitats or food 

resources while juveniles compared to when they are adults (Werner and Gilliam 1984). 
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Ecologists have therefore long recognized the need to account for age-specific predation on prey 

species when modeling predator-prey interactions (McCauley et al. 1993; Walters and Martell 

2004). Incorporating the age structure of prey into such models can be important for producing 

realistic predictions of population dynamics, particularly when generalist predators are present in 

the ecological community (Closs et al. 1999; Pavlová and Berec 2012). 

To facilitate modeling efforts, the ideal technique to determine predator diets would 

provide detailed information about the prey consumed; including species identification, prey life 

stage, and the relative proportions of prey in the overall predator diet (Tollit et al. 2010; Bowen 

and Iverson 2013). Using that information, ecologists could estimate life-stage-specific numbers 

of individual prey eaten by predator populations when diet data are combined with predator 

bioenergetic and demographic studies (Olesiuk 1993; Winship and Trites 2003; Howard et al. 

2013). 

Unfortunately many of the methods currently used to determine diets are unable to 

provide high taxonomic resolution of prey species in addition to providing the life stage and 

relative proportions of prey in predator diets (Tollit et al. 2006). Diets of seals and sea lions, for 

example, are commonly described from morphological identification of prey remains recovered 

in faecal samples (scats) (Bowen and Iverson 2013), which is effective for estimating the sizes of 

prey consumed by the pinnipeds, but often cannot distinguish between closely related prey 

species (e.g. salmonids) and the relative proportions of prey consumed (Lance et al. 2001; Laake 

et al. 2002; Phillips and Harvey 2009). An alternative diet analysis method is therefore needed to 

generate all of the necessary information needed to understand the impacts of pinniped predators 

on prey populations. 

DNA metabarcoding diet analysis is an alternative to traditional morphological prey ID 

that offers high taxonomic resolution and increasingly quantitative information about the 

proportions of species consumed by pinnipeds and other animals (Pompanon et al. 2012; 

Taberlet et al. 2012a; Taberlet et al. 2012b; Thomas et al. 2014). DNA metabarcoding is the 

process of characterizing species assemblages using diagnostic genetic markers (i.e. DNA 

barcodes) isolated from samples containing the DNA of multiple organisms, generally followed 

by high-throughput DNA amplicon sequencing. Sequences are compared to a reference database 

of known species DNA barcodes, and the proportions of different species sequences can be 
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quantified for individual samples (Coissac et al. 2012). For the purpose of diet analysis, DNA 

metabarcoding is usually applied to scat samples or stomach contents of individual animals, and 

DNA sequence percentages are used as a semi-quantitative measure of the relative mass or 

numerical abundances of species consumed (Deagle et al. 2010; Pompanon et al. 2012; Jarman 

et al. 2013).  

We explored applying both DNA metabarcoding and morphological prey ID to the same 

collection of scat samples to estimate the species and life stages of salmon consumed by 

pinnipeds. We thus used the sizes of prey bones to identify the life stage of salmon consumed 

(Lance et al. 2012; Buzzell et al. 2014), and DNA metabarcoding to identify the salmon species 

in addition to the relative proportion of salmon in the overall seal diet (Jarman et al. 2013). This 

approach is consistent with other recent studies that have highlighted the benefits of combining 

multiple diet analysis techniques to create enhanced data products (Geiger et al. 2013; Chiaradia 

et al. 2014; Méheust et al. 2014).  

In the Pacific inland waters of British Columbia, Canada (Strait of Georgia), several 

salmon species have experienced poor smolt-to-adult survival in recent decades, suggesting that 

juvenile salmon mortality has been high in the early marine phase of life (Welch et al. 2011). 

Among the potential causes of increased juvenile marine mortality, Pacific harbour seals have 

been identified as a likely contributor due to their exponential increase in numbers during the 

period (Olesiuk 2009).  

We tested our combined diet analysis method on harbour seals scats collected in the Strait 

of Georgia, where it is important to distinguish between predation on adult and juvenile salmon 

to understand the predatory impacts of harbour seals. We also compared seal diets generated 

from our combined diet analysis technique with historic seal diets determined from 

morphological hard-part analysis to document changes in seal foraging behaviour in this region 

since the 1980s (Olesiuk et al. 1990). 

 

5.3 Materials and methods 

5.3.1 Scat collection 

Scat samples were collected from four locations used by Pacific harbour seals in the 

Strait of Georgia, BC Canada (Figure 5.1). Previous research indicated that salmon predation by  
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Figure 5.1 Harbour seal haulouts in the Strait of Georgia, British Columbia, Canada, where scats were 

collected. The sites include three estuary haulouts (Fraser River, Cowichan Bay, and Comox) and one non-

estuary haulout (Belle Chain). 

 

seals in the region is most intensive near river mouths; therefore our study focused primarily on 

the estuaries of major salmon-bearing rivers (Olesiuk et al. 1990; Olesiuk 1993). Estuarine 

harbour seal haulout sites included Cowichan Bay, Fraser River, and Comox Bay (Figure 5.1). 

For comparative purposes, we also collected scat samples from a rocky reef haulout site (Belle 

Chain) because the majority of seals in the Strait occupy such haulouts (Olesiuk 2009). 
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Sampling was stratified by collection site, year (2012, 2013) and season (spring: Apr-Jul; 

fall: Aug-Nov), targeting a total of 70 seal scat samples per stratum (Trites and Joy 2005). The 

seasons roughly corresponded to the temporal windows when juvenile salmon primarily out-

migrate (spring) and when adult salmon return (fall) (Quinn 2005; Melnychuk et al. 2010). We 

attempted to attain an even sampling distribution within each stratum by collecting samples 

either monthly or biweekly from each site.  

At the haulout sites, we collected each individual scat sample using a disposable wooden 

tongue depressor to place it in a 500ml Histoplex jar lined with a 126µm nylon mesh paint 

strainer (Orr et al. 2003). Samples were either preserved immediately in the field by adding 

300ml 95% ethanol to the collection jar, or were taken to the lab and frozen at -20°C within 6 

hours of collection (King et al. 2008). Later, samples were thawed and filled with ethanol before 

being manually homogenization with a disposable depressor inside the paint strainer to separate 

the scat matrix material from hard prey remains (e.g. bones, cephalopod beaks). The paint 

strainer containing prey hardparts was then removed from the jar leaving behind the ethanol 

preserved scat matrix for genetic analysis (Thomas et al. 2014). 

 

5.3.2 Prey hardparts Analysis 

To remain consistent with the way previous harbour seal diet work in the region has been 

conducted using hard prey remains (i.e. hardparts), we used the “all structures” approach to 

identify harbour seal prey contained in individual scat samples (Olesiuk et al. 1990). Prey 

hardparts retained in the paint strainers were cleaned of debris using either a washing machine or 

nested sieves. All diagnostic prey hardparts were identified to the lowest possible taxon using a 

dissecting microscope and reference fish bones from Washington and British Columbia, in 

addition to published keys for fish bones and cephalopod beaks (Kashiwada et al. 1979; Morrow 

1979; Wolff 1982; Clarke 1986; Harvey et al. 2000; Lance et al. 2001). Samples containing prey 

hardparts identifiable only to the family level (e.g. Clupeidae) and bones identifiable to the 

species level of the same family (e.g. Pacific herring) were tallied (Lance et al. 2001). 

Prey hardparts species occurrences in samples were converted into population level diet 

percentages using the Split Sample Frequency of Occurrence model (SSFO), 



88 

 

ܨܵܵ ௜ܱ ൌ
∑ ൤

௜,௞ܫ
∑ ௜,௞ఠܫ
௜ୀଵ

൨௦
௞ୀଵ

ݏ
 

where ω = number of prey categories, s = number of samples,… I = indicator function equal to 1 

if the i th prey category is present in the k th sample, and 0 if it is absent (Olesiuk et al. 1990; 

Tollit et al. 2010). Simply speaking, this model divides each species occurrence in a scat by the 

total number of occurrences in the scat (thereby converting to a proportion), and then calculates a 

population average for each prey species across all scats in a collection. 

Salmon vertebrae diameters were measured to demonstrate the size differential between 

juvenile and adult salmon bones, which is visually evident to taxonomic experts. Two 

representative salmon vertebrae classified as "juvenile" and two classified as "adult" were 

measured from samples collected in each month and in both years. Not all months contained 

samples with salmon vertebrae in both age classes, resulting in 49 total measured salmon 

vertebrae (25 juvenile, 24 adult) (Figure B-1). 

Fish otoliths in seal scats were also measured using an ocular micrometer and graded 

based on the observed level of digestion erosion (Tollit et al. 2004). Grade-specific length 

correction factors for salmon were applied to any salmon otoliths that were graded “good” (no or 

minimal erosion) or “fair” (small amount of erosion) (Phillips and Harvey 2009). Corrected 

otolith lengths were used to estimate the fork lengths of juvenile salmon consumed by seals 

using a published linear equation of the relationship between otolith length and fish length for 

salmon smolts (Neilson and Geen 1982). 

 

5.3.3 DNA metabarcoding diet analysis 

Ethanol preserved scat matrix samples were subsampled, centrifuged and dried to remove 

ethanol prior to DNA extraction. Extraction was done using the QIAGEN QIAamp DNA Stool 

Mini Kit following customized protocols for pinniped scat DNA extraction (Deagle et al. 2005). 

The metabarcoding marker we used to quantify fish proportions was a 16S mtDNA 

fragment (~ 260 bp) previously described in Deagle et al. 2009 for pinniped scat analysis. We 

used the combined Chord/Ceph primer sets: Chord_16S_F 

(GATCGAGAAGACCCTRTGGAGCT), Chord_16S_R (GGATTGCGCTGTTATCCCT), 

Ceph_16S_F (GACGAGAAGACCCTAWTGAGCT), and Ceph_16S_R 
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(AAATTACGCTGTTATCCCT). This multiplex PCR reaction is designed to amplify both 

chordate and cephalopod prey species DNA. 

For the samples collected in 2012, a secondary metabarcoding marker was used to 

quantity the salmon portion of seal diet because the primary 16S marker is unable to differentiate 

between coho (Oncorhynchus kisutch) and steelhead (Oncorhynchus mykiss) DNA sequences 

(Table B-1). This marker was a COI “minibarcode” specifically for salmonids within the 

standard COI barcoding region: Sal_COI_F (CTCTATTTAGTATTTGGTGCCTGAG), 

Sal_COI_R (GAGTCAGAAGCTTATGTTRTTTATTCG). The COI amplicons were sequenced 

alongside 16S such that the overall salmonid fraction of the diet was quantified by 16S, and the 

salmon species proportions within that fraction were quantified by COI. The salmon specific 

marker was not used with 2013 samples because the steelhead diet component was determined to 

be quite small in 2012, and did not justify the additional expense for subsequent samples. 

To take full advantage of sequencing throughput, we used a two stage labeling scheme to 

identify sequences to individual samples that involved both PCR primer tags and labeled MiSeq 

adapter sequences (Deagle et al. 2013). The open source software package EDITTAG was used 

to create 96 primer sets each with a unique 10bp primer tag and an edit distance of 5. This means 

that 5 insertions, substitutions, or deletions would be required to cause one sample’s sequences to 

be confused for another (Faircloth and Glenn 2012). 

A blocking oligonucleotide was included in all PCRs to limit amplification of seal DNA 

(Vestheim & Jarman 2008). The oligonucleotide (32 bp: 

ATGGAGCTTTAATTAACTAACTCAACAGAGCA-C3) matches harbour seal sequence 

(GenBank Accession AM181032) and was modified with a C3 spacer, so it is non-extendable 

during PCR. This oligo selectively blocks amplification of seal DNA because it overlaps with the 

3′-end of the Chord_16S_F primer and adjoining seal sequence, but has little homology to fish 

species.  

All PCR amplifications were performed in 20 μl volumes using the Multiplex PCR Kit 

(QIAGEN). Reactions contained 10 μl (0.5 X) master mix, 0.25 μM of each primer, 2.5 μM 

blocking oligonucleotide and 2 μl template DNA. Thermal cycling conditions were: 95 °C for 15 

min followed by 34 cycles of: 94 °C for 30 s, 57 °C for 90 s, and 72 °C for 60 s.  
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Amplicons from 96 individually labeled samples were pooled using the following 

process: All samples were run on a 1.5% agarose gels, and the luminosity of each sample’s PCR 

product band was quantified using Image Studio Lite (Version 3.1). To combine all samples in 

roughly equal proportion (normalization), we calculated the fraction of each sample’s PCR 

product added to the pool based on its luminosity value relative to brightest band.  

Sequencing libraries were prepared from the pools of 96 samples using an Illumina 

TruSeqTM DNA sample prep kit which ligated uniquely labeled adapter sequences to each pool. 

Libraries were then pooled and DNA sequencing was done on an Illumina MiSeq using the 

MiSeq Reagent Kit v2 (300 cycle) for SE 300bp reads. We sequenced our samples on multiple 

different MiSeq runs, some of which contained samples from other experiments; however, 

typically between 4 and 6 libraries (each a pool of 96 individually identifiable samples) were 

sequenced on a single MiSeq run. Greater sequencing depth was needed for the 16S amplicons 

due to the high number of harbour seal reads, so the COI amplicons were pooled at 1/3 the 

concentration of the 16S amplicons. 

 

5.3.4 Bioinformatics 

Sequences were automatically sorted (MiSeq post processing) by amplicon pool using the 

indexed TruSeqTM adapter sequences. FASTQ sequence files for each library were imported into 

QIIME for demultiplexing and sequence assignment to species (Caporaso et al. 2010). For a 

sequence to be assigned to sample, it had to match the full forward and reverse primer sequences, 

and match the 10 bp primer tag for that sample (allowing for up to 2 mismatches in either 

primers or tag sequence). 

To assign DNA sequences to a fish species, we created a custom BLAST reference 

database of 16S sequences using an iterative process. First, with a list of the fish species of Puget 

Sound we searched GenBank for the 16S sequence fragment of all fishes known to occur in the 

region (71 fish families 230 species) (DeVaney and Pietsch 2006; Benson et al. 2012). Reference 

sequences for each prey species were included in the database if the entire fragment was 

available, and preference was given to sequences of voucher specimens. GenBank contained 16S 

sequences for 192 of the 230 fish species in the region, and the remaining 38 species were mostly 

uncommon species unlikely to occur in seal diets. 
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Next, we clustered the DNA sequences that were assigned to scat or tissue samples with 

USEARCH (similarity threshold = 0.99; minimum cluster size = 3; de novo chimera detection), 

and entered a representative sequence from each cluster in a GenBank nucleotide BLAST search 

(Altschul et al. 1990; Edgar 2010). If the top matching species for any cluster was not included 

in the existing database (or the sequence differed indicating allelic variation), we put the top 

matching entry in the reference database. We repeated this procedure with every new batch of 

sequence data to minimize the potential for incorrect species assignment or prey species 

exclusion. The same process was followed to create a separate salmon only COI reference 

database. 

For all DNA sequences successfully assigned to a sample, a BLAST search was done 

against our custom 16S or COI reference databases. A sequence was assigned to a species based 

on the best match in the database (threshold BLASTN e-value < 1e-20 and a minimum identity 

of 0.9), and the proportions of each species’ sequences were quantified by individual sample 

after excluding harbour seal sequences or any identified contaminants (Caporaso et al. 2010). 

Samples were excluded from subsequent analysis if they contained < 10 identified prey DNA 

sequences. Harbour seal population diet percentages were then calculated from the DNA 

sequence percentages of individual samples in a collection similarly to SSFO - where seal 

population diet percentage for a particular prey species represents the average species DNA 

sequences % calculated from all samples in the collection. 

 

5.3.5 Estimating salmon life stages 

We created a novel “decision tree” approach to assign the recovered salmon DNA to 

either adult or juvenile by combining DNA and hardparts data from the same collection of scat 

samples (Figure 5.2). For a given salmon species, we split the DNA percentage according to the 

ratio of adult to juvenile salmon―and calculated the ratio in three different ways (1–salmon 

sample SSFO; 2–salmon monthly SSFO; 3–fixed season ratio). 
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Figure 5.2 A schematic diagram depicting the decision tree approach we developed to estimate salmon species 

and life stage in harbour seal diet. This example demonstrates how Chinook salmon DNA sequences in an 

individual seal scat sample can be assigned to juvenile or adult Chinook salmon based on the co-occurrence of 

salmon bones. If salmon bones are present in the sample containing Chinook DNA, the salmon sample SSFO 

is used to split DNA % into adult and juvenile Chinook %. If no salmon bones are present in the sample, and 

more than three samples in the same monthly collection contain salmon bones, the salmon monthly SSFO is 

used. In the rare case when neither criterion is met, the species DNA % is split according to the fixed season 

ratio (see methods section for details). 
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The ratio method we applied depended on the available information for a particular 

sample. Most notably, the salmon sample SSFO was calculated by dividing the salmon hardparts 

occurrences in a sample (specified to life stage) by the total number of salmon occurrences 

within that sample. For example, if a sample contained hardparts from an adult salmon and a 

juvenile salmon, the ratio was 0.5:0.5 (adult:juvenile). However, the ratio was 1:0 if a sample 

contained only adult salmon bones, and the ratio was 0:1 if it contained only juvenile salmon 

bones. The salmon monthly SSFO was calculated by averaging the salmon sample SSFO values 

for a particular month and collection site, similar to the equation detailed in section 5.3.2. Lastly, 

the fixed season ratio assumed that all salmon consumed in the spring season were juveniles (0:1 

– adult:juvenile ratio) and that all salmon consumed in the fall season are adults (1:0 – 

adult:juvenile ratio) (see results and discussion for evaluation of this assumption). 

A sample containing salmon species DNA as well as salmon bones resulted in the salmon 

species DNA % being split by the salmon sample SSFO ratio. However, if no salmon bones were 

identified in the sample and > 3 samples contained salmon bones in the collection site and 

month, the species DNA % was split according to the salmon monthly SSFO ratio. If no salmon 

bones were present in the sample and < 3 samples contained salmon bones in the collection 

site/month, the DNA % was split by the fixed season ratio. 

This method of partitioning salmon between juvenile and adult life stages works on the 

assumption that the probable life stage of salmon species occurring in any individual scat can be 

inferred based on the co-occurrences of salmon bones in scats collected in the same location and 

month. Furthermore, this method prioritizes the best level of information available to partition 

the salmon species into life stages, rather than simply making assumptions based on regional fish 

life history information. 

 

5.3.6 Comparison to 1980s diet data 

To evaluate whether harbour seal diet in the Strait of Georgia changed since the last 

comprehensive diet study in the region, we compared prey hardparts SSFO summaries for 

estuary collected samples between our study and those of Olesiuk et al. (1990). The open source 

software program WebPlotDigitizer was used to extract data values from Figure 12 of the report 

“Seasonal changes in (harbour seal) diet composition for all estuaries combined” (Olesiuk et al. 
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1990). Monthly estuarine harbour seal population diet estimates were extracted for the four main 

prey categories (“herring”, “salmon”, “gadoids” including Pacific hake, and “other”), and were 

used to calculate seasonal averages that correspond with the seasons defined in our study. The 

seasonal averages were calculated as the average of the four monthly average values within each 

season (similar to the extracted figure values) for the purposes of these comparisons. This is in 

contrast to the other seasonal summaries presented, which represent the averages of all samples 

collected in a particular season. 

 

5.4 Results 

A total of 1,258 scat samples were collected from all four sites combined during the study 

period. Of these, 18 samples were identified as belonging to California sea lions (Zalophus 

californianus) based on a high percentage of sea lion DNA present in the samples. Of the 

remaining 1,240 harbour seal scat samples, 1,166 (94.0%) produced sufficient prey DNA 

sequences to be analyzed, and 1,168 (94.2%) contained identifiable prey hardparts. Illumina 

MiSeq sequencing of scat DNA produced on average 1,227 prey DNA sequences per sample for 

those samples which passed filtering, and morphological analysis of scats identified on average 

5.2 prey hardparts per sample.  

Large sample sizes were obtained in all site and season combinations (range: 57 – 125 

samples), with the exception of the Belle Chain site where tidal washing prohibited the collection 

of a sufficient sample size in the spring season. Collected sample sizes for each combination of 

year, site and season were: 2012; Fraser spring (n = 71), Fraser fall (n = 85), Comox spring (n = 

86), Comox fall (n = 120), Cowichan spring (n = 57), Cowichan fall (n = 85), Belle Chain fall (n 

= 94): 2013; Fraser spring (n = 105), Fraser fall (n = 71), Comox spring (n = 125), Comox fall (n 

= 73), Cowichan spring (n = 88), Cowichan fall (n = 95), Belle Chain fall (n = 82). Not all 

samples collected in each stratum produced sufficient prey DNA or hardparts information to be 

included in diet summaries. Tabulated sample sizes therefore indicate the number of samples that 

contributed to diet summary calculations. 

Diet summaries are shown for each sampling year, location and season, calculated using 

both prey hardparts SSFO % and quantitative DNA metabarcoding diet % (Table 5.1). In 

addition to tabulated diet summaries, monthly salmon consumption by harbour seals for each  
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Table 5.1 Diets of harbour seals (%) stratified by sampling location (Fraser River, Comox, Cowichan Bay, Belle Chain), year and season (spring: Apr-Jul; fall: Aug- 

Nov). Percentages are estimates of the relative mass consumed and were calculated using DNA metabarcoding (DNA) and prey hardparts Split Sample Frequency of 

Occurrence (HP). Sample size indicates the number of scats that had useable DNA or hard parts to estimate average diets. 

 

Site
year

season
method DNA HP DNA HP DNA HP DNA HP DNA HP DNA HP DNA HP DNA HP DNA HP DNA HP DNA HP DNA HP DNA HP DNA HP

sample size 70 67 83 83 88 101 70 70 85 79 111 119 98 106 73 73 56 53 83 85 76 86 91 95 85 87 77 81

Herring spp. ‐ 12.0 ‐ 1.6 ‐ 10.1 ‐ 0.5 ‐ 10.3 ‐ 1.5 ‐ 5.6 ‐ 5.4 ‐ 8.3 ‐ 4.4 ‐ 6.7 ‐ 4.5 ‐ 10.4 ‐ 5.1
Pacific herring 16.1 7.6 2.2 0.7 14.0 10.4 3.6 0.7 36.1 26.0 23.8 20.5 36.7 39.3 22.9 19.0 48.1 30.1 24.7 16.8 42.4 47.4 26.2 23.1 44.1 29.8 31.6 23.6
American shad 4.2 ‐ ‐ ‐ 0.4 ‐ ‐ ‐ 0.4 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.8 ‐ ‐ ‐
Pacific sardine ‐ 1.6 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.9 ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.6 ‐ ‐
Herring total 20.3 21.2 2.2 2.3 14.3 20.6 3.6 1.2 36.6 36.3 23.8 22.0 36.7 44.9 22.9 24.4 48.1 39.4 24.7 21.2 42.4 54.1 26.2 27.6 44.9 40.8 31.6 28.7

Salmon spp. adult ‐ 32.2 ‐ 79.9 ‐ 4.7 ‐ 83.6 ‐ 2.3 ‐ 28.5 ‐ 0.3 ‐ 29.8 ‐ ‐ ‐ 20.1 ‐ 1.6 ‐ 14.7 ‐ 6.0 ‐ 40.9
Chinook salmon ad. 4.6 ‐ 22.7 ‐ 6.5 ‐ 4.0 ‐ 2.4 ‐ 2.3 ‐ 1.0 ‐ 2.5 ‐ ‐ ‐ 9.0 ‐ 0.8 ‐ 3.4 ‐ 4.1 ‐ 2.2 ‐
chum salmon ad. 0.1 ‐ 38.4 ‐ 0.3 ‐ 20.6 ‐ ‐ ‐ 24.1 ‐ ‐ ‐ 4.4 ‐ ‐ ‐ 11.7 ‐ ‐ ‐ 9.4 ‐ ‐ ‐ 7.7 ‐
coho salmon ad. 0.4 ‐ 2.0 ‐ ‐ ‐ 2.5 ‐ ‐ ‐ 0.8 ‐ ‐ ‐ 1.4 ‐ ‐ ‐ 0.5 ‐ 0.3 ‐ 2.5 ‐ 0.4 ‐ 0.5 ‐
pink salmon ad. 0.6 ‐ 1.4 ‐ 0.1 ‐ 45.5 ‐ 0.3 ‐ 3.4 ‐ ‐ ‐ 26.8 ‐ ‐ ‐ 2.1 ‐ ‐ ‐ 5.9 ‐ 0.5 ‐ 35.8 ‐
sockeye salmon ad. 35.7 ‐ 23.0 ‐ 1.6 ‐ 18.6 ‐ 0.6 ‐ 0.9 ‐ 0.3 ‐ 2.7 ‐ ‐ ‐ 3.2 ‐ ‐ ‐ 2.3 ‐ 2.8 ‐ 4.3 ‐
steelhead ad. 1.6 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.2 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

Salmon spp. juvenile ‐ 1.9 ‐ 0.9 ‐ 1.5 ‐ 0.5 ‐ 10.1 ‐ 2.8 ‐ 5.2 ‐ 4.2 ‐ 4.8 ‐ 3.4 ‐ 1.8 ‐ 3.1 ‐ 7.1 ‐ 3.0
Chinook salmon juv. 2.3 ‐ 0.5 ‐ 2.8 ‐ ‐ ‐ 4.5 ‐ 0.1 ‐ 0.8 ‐ 0.3 ‐ 6.2 ‐ 2.3 ‐ 2.3 ‐ 1.8 ‐ 7.5 ‐ ‐ ‐
chum salmon juv. 0.2 ‐ 0.2 ‐ 0.4 ‐ 1.3 ‐ 0.9 ‐ 0.6 ‐ 2.2 ‐ 0.1 ‐ ‐ ‐ 0.5 ‐ 0.5 ‐ 1.0 ‐ 0.4 ‐ 1.3 ‐
coho salmon juv. 0.6 ‐ ‐ ‐ 0.9 ‐ ‐ ‐ 5.0 ‐ 0.1 ‐ 4.3 ‐ 2.6 ‐ 2.8 ‐ 0.6 ‐ 3.2 ‐ 0.2 ‐ 0.6 ‐ 0.8 ‐
pink salmon juv. 0.3 ‐ 0.1 ‐ 2.2 ‐ ‐ ‐ 1.8 ‐ 1.0 ‐ 0.5 ‐ 2.2 ‐ 0.8 ‐ 1.2 ‐ 2.6 ‐ 0.9 ‐ 0.5 ‐ 0.3 ‐
sockeye salmon juv. 0.1 ‐ ‐ ‐ 2.9 ‐ ‐ ‐ 1.3 ‐ 0.3 ‐ 4.4 ‐ 1.4 ‐ 2.8 ‐ 1.3 ‐ 2.7 ‐ 0.9 ‐ 5.4 ‐ ‐ ‐
steelhead juv. 0.5 ‐ ‐ ‐ ‐ ‐ ‐ ‐ 1.3 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.1 ‐ ‐ ‐ ‐ ‐ 0.1 ‐ ‐ ‐
Salmon total 47.0 34.1 88.4 80.8 17.6 6.2 92.5 84.0 18.1 12.5 33.6 31.3 13.4 5.5 44.4 34.0 12.7 4.8 32.9 23.4 12.4 3.3 28.3 17.8 22.3 13.1 52.9 43.9

Codfish spp. ‐ 3.4 ‐ ‐ ‐ 5.2 ‐ 2.1 ‐ 4.0 ‐ 1.3 ‐ 1.5 ‐ 1.8 ‐ 4.1 ‐ 4.9 ‐ 5.5 ‐ 4.2 ‐ 2.8 ‐ ‐
walleye pollock 5.8 5.5 1.3 0.2 8.2 10.8 0.5 2.1 8.1 3.0 2.6 3.9 1.6 0.7 0.5 2.2 11.0 7.5 13.2 12.0 9.4 8.1 7.3 3.5 21.6 23.1 9.9 8.6
Pacific hake 1.5 1.4 0.6 1.0 6.3 1.4 0.1 ‐ 10.6 9.0 6.7 8.5 25.8 21.2 7.7 6.3 6.9 3.8 12.7 9.1 17.5 7.8 19.6 12.8 1.1 1.6 0.6 0.7
Pacific cod 1.2 ‐ ‐ ‐ 0.5 ‐ ‐ ‐ 1.0 ‐ ‐ ‐ ‐ ‐ 0.3 ‐ 0.3 ‐ ‐ ‐ ‐ ‐ ‐ ‐ 1.2 ‐ ‐ ‐
Pacific tomcod ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 1.0 2.4 ‐ 0.6 ‐ ‐ 1.0 ‐ ‐ ‐ ‐ 0.2 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐
Gadoids total 8.5 10.2 1.9 1.2 15.0 17.4 0.6 4.3 20.7 18.4 9.4 14.3 27.4 23.4 9.4 10.3 18.2 15.3 25.9 26.2 26.9 21.5 26.8 20.6 23.8 27.6 10.5 9.4

threespine stickleback 3.8 4.7 ‐ ‐ 21.6 19.1 ‐ ‐ 0.8 1.9 0.2 ‐ 2.5 0.8 0.1 ‐ 3.8 4.5 ‐ 0.3 5.9 3.2 0.8 0.6 ‐ 0.4 ‐ ‐
shiner surfperch ‐ ‐ 0.2 0.3 0.4 0.5 0.3 0.5 0.2 1.1 3.8 4.7 3.2 2.9 8.7 8.8 0.5 3.5 3.9 9.1 4.9 3.9 10.7 9.9 ‐ 0.4 0.7 ‐
Pacific sand lance 0.1 ‐ ‐ 1.0 0.4 1.4 1.3 1.7 2.4 5.6 2.6 2.8 0.1 2.6 ‐ ‐ ‐ 1.3 ‐ ‐ ‐ 1.0 ‐ ‐ 0.2 1.0 ‐ 0.2
snake prickleback 0.2 ‐ ‐ 0.6 ‐ 0.3 ‐ ‐ 5.2 5.5 7.8 6.4 1.9 1.7 3.7 3.4 1.7 2.0 ‐ 1.0 ‐ 0.7 ‐ 0.4 ‐ ‐ ‐ ‐
Smelt spp. ‐ 4.5 ‐ 0.3 ‐ 9.4 ‐ ‐ ‐ 1.3 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.2 ‐ 0.4
Northern smoothtongue 4.9 ‐ ‐ ‐ 3.9 1.1 ‐ ‐ 0.3 ‐ ‐ ‐ 0.1 ‐ ‐ ‐ 0.6 ‐ ‐ ‐ 0.2 ‐ ‐ ‐ ‐ ‐ 0.6 ‐
eulachon 0.1 ‐ ‐ ‐ 16.8 ‐ ‐ ‐ ‐ ‐ 0.3 ‐ 0.6 ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.7 ‐ ‐ ‐ ‐ ‐ 0.4 ‐
capelin ‐ ‐ ‐ ‐ 1.0 5.6 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.2 ‐ ‐ ‐ ‐

Fraser River Comox Cowichan Bay Belle Chain
2012 2013 2012 2013 2012 2013

Fall

2012 2013

Spring Fall Spring Fall Spring Fall Spring Fall Spring Fall Spring Fall Fal l
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Table 5.1 continued 

 

Site
year

season
method DNA HP DNA HP DNA HP DNA HP DNA HP DNA HP DNA HP DNA HP DNA HP DNA HP DNA HP DNA HP DNA HP DNA HP

sample size 70 67 83 83 88 101 70 70 85 79 111 119 98 106 73 73 56 53 83 85 76 86 91 95 85 87 77 81

Sculpin spp. ‐ 0.7 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 3.0 ‐ ‐ ‐ 0.5 ‐ 1.8 ‐ 2.0 ‐ ‐ ‐ 0.5 ‐ ‐ ‐ ‐
Pacific staghorn sculpin ‐ 0.5 1.7 1.0 0.4 0.2 1.4 1.2 0.6 0.4 5.9 4.7 1.3 1.4 3.3 6.2 3.1 1.4 3.4 3.6 0.2 0.2 2.9 3.9 0.2 ‐ 0.2 ‐
buffalo sculpin ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 1.4 ‐ ‐ ‐ 2.5 ‐ ‐ ‐ 0.4 ‐ 0.2 ‐ ‐ ‐
tadpole sculpin ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 1.9 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐
blackbelly eelpout ‐ 0.4 ‐ ‐ ‐ 0.3 ‐ ‐ 1.2 0.4 1.8 1.1 ‐ 0.2 ‐ 0.5 0.1 ‐ ‐ 0.8 ‐ ‐ ‐ ‐ ‐ 0.2 ‐ ‐
Rockfish spp. ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.8 ‐ ‐ ‐ 0.6 ‐ 1.2 ‐ 1.1 ‐ ‐ ‐ ‐
China rockfish ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.4 ‐ 2.3 ‐ 0.1 ‐ ‐ ‐ ‐ ‐
l ingcod 0.2 ‐ ‐ ‐ ‐ ‐ ‐ ‐ 2.5 ‐ 4.5 ‐ ‐ ‐ 1.9 ‐ 0.4 ‐ 1.5 ‐ 0.3 ‐ 0.1 ‐ 0.4 ‐ ‐ ‐
whitespotted greenling ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.9 ‐ 2.1 ‐ ‐ ‐ ‐ ‐ ‐ ‐ 1.2 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐
plainfin midshipmen ‐ ‐ ‐ ‐ ‐ 0.3 ‐ ‐ 0.2 0.3 ‐ 0.3 2.0 1.9 0.1 ‐ 2.3 1.9 ‐ 0.4 1.0 ‐ 1.1 0.5 ‐ ‐ ‐ ‐
cabezon ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 1.5 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐
Righteye flounder spp. ‐ 2.9 ‐ 1.4 ‐ 2.9 ‐ 0.5 ‐ 1.3 ‐ 1.1 ‐ 6.6 ‐ 2.3 ‐ 0.6 ‐ ‐ ‐ 3.2 ‐ 1.6 ‐ 0.4 ‐ ‐
starry flounder ‐ ‐ 2.4 1.9 ‐ 0.7 ‐ 2.1 2.9 1.7 0.9 2.7 2.1 2.1 2.2 2.7 1.8 0.6 0.4 0.4 ‐ ‐ 0.1 ‐ ‐ ‐ ‐ ‐
English sole 0.9 0.4 1.7 0.3 0.2 1.5 ‐ ‐ 1.0 1.7 1.7 1.0 2.2 ‐ 0.3 0.2 1.7 1.9 0.2 ‐ ‐ ‐ ‐ ‐ 0.1 ‐ ‐ ‐
Dover sole 0.6 ‐ ‐ ‐ 0.9 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 1.4 ‐ 0.9 ‐ ‐ ‐ ‐ ‐
arrowtooth flounder ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.3 ‐ 0.1 ‐ 2.0 ‐ 1.3 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐
Pacific halibut 1.9 ‐ 0.1 ‐ ‐ ‐ 0.2 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.2 ‐ ‐ ‐ ‐ ‐ ‐ ‐
Unidentifiable fish spp. ‐ 12.2 ‐ 2.4 ‐ 2.5 ‐ 2.9 ‐ 3.2 ‐ 0.8 ‐ 2.4 ‐ ‐ ‐ 3.8 ‐ 2.9 ‐ 0.7 ‐ 2.1 ‐ 3.4 ‐ 2.5
Unknown fish spp. ‐ ‐ ‐ 2.4 ‐ ‐ ‐ ‐ ‐ 1.3 ‐ 2.4 ‐ 0.2 ‐ 1.4 ‐ ‐ ‐ 0.6 ‐ 0.4 ‐ ‐ ‐ ‐ ‐ 1.2
river lamprey 1.6 2.8 0.1 1.4 0.3 3.4 ‐ 1.7 0.7 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 1.1 1.3 1.0 ‐ 1.0 0.1 3.3 4.0 2.8 1.8 2.4
spotted ratfish 4.1 ‐ 0.6 ‐ 2.5 ‐ ‐ ‐ 0.1 ‐ 0.9 ‐ ‐ ‐ ‐ ‐ 1.7 ‐ 0.4 ‐ 0.2 ‐ ‐ ‐ 2.7 ‐ ‐ ‐
Skate spp. ‐ 2.6 ‐ ‐ ‐ 2.8 ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.3 ‐ 0.2 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.6 ‐ ‐
big skate 3.3 ‐ ‐ ‐ 3.2 ‐ ‐ ‐ 0.4 ‐ ‐ ‐ 1.1 ‐ 0.2 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐
magister armhook squid 0.5 1.7 ‐ 1.3 0.1 1.0 ‐ ‐ 0.3 0.6 ‐ 0.7 ‐ ‐ ‐ 0.8 0.2 5.8 0.1 ‐ ‐ 0.2 ‐ 1.1 0.2 5.9 ‐ 5.7
California market squid 0.2 ‐ ‐ ‐ ‐ 0.2 ‐ ‐ 2.4 2.7 ‐ ‐ ‐ 1.5 ‐ ‐ 0.6 4.1 0.2 2.0 ‐ 1.4 ‐ 2.2 ‐ ‐ ‐ ‐
clawed armhook squid ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 5.6 ‐ 1.9 ‐ 0.6 ‐ ‐ ‐ 0.4 ‐ 0.9
giant Pacific octopus ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 1.4 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.4 ‐ ‐ ‐ ‐ ‐ 0.9 ‐
Unknown cephalopod spp ‐ 0.2 ‐ 0.6 ‐ 1.0 ‐ ‐ ‐ 1.9 ‐ 0.3 ‐ 0.3 ‐ ‐ ‐ ‐ ‐ 2.6 ‐ 0.7 ‐ 3.0 ‐ 0.7 ‐ 3.5
Unknown crustacean spp. ‐ ‐ ‐ ‐ ‐ 0.2 ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.8 ‐ 3.2 ‐ ‐ ‐ ‐ ‐ 0.9 ‐ 2.2 ‐ ‐ ‐ 1.2
< 1% species 1.3 1.0 0.5 0.6 1.1 1.4 0.1 ‐ 0.7 1.9 0.2 0.6 1.7 0.5 ‐ 0.2 0.5 0.5 0.8 ‐ 0.4 2.0 1.2 1.5 0.7 2.2 0.1 ‐
Other total 23.8 34.5 7.4 15.6 52.8 55.8 3.2 10.5 24.4 32.8 32.9 32.4 22.3 26.2 23.2 31.3 20.8 40.4 16.2 29.1 18.1 21.2 18.5 34.1 8.6 18.5 4.8 18.0

All total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Fraser River Comox Cowichan Bay Belle Chain
2012 2013 2012 2013 2012 2013

Fall

2012 2013

Spring Fall Spring Fall Spring Fall Spring Fall Spring Fall Spring Fall Fall
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sampling site is shown by salmon species and life stage for each sampling year in Appendix B: 

Comox (Figure B-2; Figure B-3: Figure B-4), Fraser (Figure B-5; Figure B-6; Figure B-7), 

Cowichan Bay (Figure B-8; Figure B-9; Figure B-10),and Belle Chain (Figure B-11; Figure 

B-12; Figure B-13). 

When assigning salmon species DNA percentages to either adult or juvenile life stage, it 

was important to note which source of information was used to generate the juvenile/adult 

salmon ratio. Of the 756 samples that produced salmon DNA sequences, 419 (55.4%) were 

assigned to life stage using the salmon sample SSFO ratio (i.e. the same scat samples contained 

identified salmon hardparts). Another 285 (37.7%) samples did not contain salmon hardparts but 

were assigned to life stage based on the salmon monthly SSFO ratio because > 3 samples from 

the same location/month contained salmon hardparts. Only 52 (6.9%) samples were assigned to 

salmon life stage based on the fixed season ratio. Salmon species assignment to life stage was 

therefore informed by salmon hardparts data for 93% of samples containing salmon DNA. 

Large differences were detected in estuarine harbour seal diet between the 1980s and the 

present study when comparing summaries generated using the same method (hardparts SSFO 

%), and site type (i.e. estuary sites; Figure 5.3). In the 1980s, harbour seal diet was dominated by 

gadoids in both seasons (spring = 47.0%; fall = 46.0%), and salmon comprised a much smaller 

portion of the overall diet (spring = 6.0%; fall = 15.7%). This is in contrast to samples collected 

during 2012-2013 in which gadoids represented a much reduced portion of harbour seal diet 

(spring = 17.5%; fall = 15.1%), and salmonids dominated the diet in the fall (spring = 8.9%, fall 

= 43.0%). The herring portion of harbour seal diet was remarkably consistent between both 

periods, regardless of the method used to analyze the diet (Figure 5.3). 
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Figure 5.3 Average diets of harbour seals (%) in estuaries during spring and fall based on hardparts SSFO 

percentages (1980s and 2012-2013) and DNA metabarcoding diet percentages (2012-2013). Diets were 

determined from remains in scats and are grouped into four prey categories (Herring, Gadoids, Salmon, 

Other). Total samples included in 2012-2013 estimates were: Spring (n = 473); Fall (n = 540).  
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Figure 5.4 Monthly amounts (%) of juvenile (left) and adult (right) salmon species present in harbour seal 

scats collected at haulouts in estuaries (2012-2013). Species were determined using DNA sequencing, and life 

stages were determined from a salmon hardparts decision tree analysis. Data represent averages for all 

estuary sites and years combined. Sample sizes in each month are indicated in the lower figure margin. 
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Figure 5.5 Percent of adult and juvenile salmon (chum, pink, sockeye, Chinook and coho) contained in harbor 

seal scats collected over 4 month periods. Adult salmon were consumed in the fall (Aug – Nov) and juvenile 

salmon species were consumed in the spring (Apr – Jul). 

 

DNA metabarcoding diet analysis detected higher levels of salmon in harbour seal diet 

than hardparts SSFO analysis for the 2012-2013 samples, increasing the salmon diet percentage 

in both seasons. This was particularly apparent in the spring season when the salmon portion of 

seal diet doubled by using the DNA-based method (hardparts SSFO = 8.9% salmon; DNA 

metabarcoding = 18.0% salmon). Only small differences were observed between methods in the 

gadoid and herring portions of harbour seal diet (Figure 5.3).  

Life stage specific harbour seal diet percentages for salmon species resulted in clear 

seasonal trends in harbour seal salmon predation, pooling samples across years and all 3 estuary 
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sites (Figure 5.4). Low levels of adult salmon predation were observed from April– June and 

primarily consisted of Chinook salmon (Oncorhynchus tshawytscha), which peaked at 2.7% of 

the overall seal diet in April. Following this period we detected a sequential increase in adult 

salmon consumption by harbour seals, with different salmon species peaking in different months. 

Adult salmon predation initiated with sockeye (Oncorhynchus nerka) in July, which then peaked 

in August and was finished in September. Sockeye predation was followed by pink salmon 

(Oncorhynchus gorbuscha) predation, which peaked September and finished in October. Chum 

salmon (Oncorhynchus keta) was the last and most important salmon species in harbour seal diet, 

beginning in September and peaking in November. Two peaks were observed in adult Chinook 

predation, with a small peak in July and a larger peak in September. Adult coho salmon was a 

surprisingly small component of the overall seal diet, peaking at 3.4% in October. 

Seasonal trends in juvenile salmon predation by seals were less defined, but varied 

substantially between salmon species. In contrast to adult salmon predation, coho comprised the 

largest component of harbour seal diet in the spring, with peaks of 4.8% in April and 3.9% in 

July (Figure 5.4, Figure 5.5). Juvenile Chinook salmon was also an important diet species, with a 

combined peak in June and July at 3.9%. Juvenile sockeye and pink salmon predation was 

consistent throughout the spring, with no clearly defined peaks in predation at the aggregate 

scale. Also in contrast to adult salmon predation, juvenile chum salmon was the least important 

of the juvenile diet species for seals (Figure 5.5).  

In addition to seasonal variability, we observed marked inter-annual variability in harbour 

seal salmon predation between 2012 and 2013 (Figure 5.6). In 2012 for example, adult sockeye 

salmon was more important in the seal diet (July = 25.1% and August = 23%) than it was in 

2013 when adult sockeye peaked at 16.0% of seal diet. Additionally, the percentage of adult pink 

salmon in seal diet was far greater in 2013 than it was in 2012, and appeared to be inversely 

related to the percentage of adult Chinook salmon in the seal diet (i.e. the year with high pink 

salmon predation had low Chinook predation). Juvenile salmon predation by seals varied 

between years as well; coho and Chinook predation for example both peaked in June and July of 

2012, but they did not exhibit the same unimodal pattern in 2013. Large differences were also 

detected in the percentage of juvenile sockeye consumed between years (Figure 5.6). 

  



102 

 

 
Figure 5.6 Percentages of salmon (steelhead, sockeye, pink, coho, chum and Chinook) by life stage (juvenile 

or adult) in the diets of harbour seals using estuary haulouts in 2012 and 2013. Diets were determined by 

month, and sample size indicates the numbers of scats collected each month. Differences between years in 

salmon species consumed reflect differences in year class strengths and life histories of the different salmonid 

species. Note that steelhead were only detectable in 2012 when the secondary (COI) salmon-specific DNA 

marker was used. 
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Figure 5.7 Estimated fork lengths of juvenile salmon (Chinook, coho and sockeye) derived from the few 

otoliths recovered in seal scats that were not too eroded to measure. Colors indicate the species of salmon 

based on morphological ID, and the letters identify where the seal scat was collected (A = Comox, B = 

Cowichan Bay, C = Belle Chain). 

 

Of the 433 salmon otoliths recovered from the harbour seal scats, 363 (84%) were graded 

as “poor” due to digestion erosion and could not be used to estimate fish lengths. The remaining 

salmon otoliths were paired to represent a minimum number of individual fish, and fork lengths 

of juveniles were estimated for 35 salmon otoliths identified to a species (Figure 5.7). As stated, 

many juvenile salmon otoltihs were too eroded to measure, and many more were likely 

completely digested. However, assuming these 35 otoliths were an unbiased representation of the 

juvenile salmon consumed indicates that harbour seals targeted salmon juveniles between 7.8 - 

23.4 cm (fork length). During spring (April – July), the seals primarily consumed juvenile 

salmon between 5 and 15 cm, and in the fall (August – November) seals targeted juveniles 

between 15 and 25 cm. The majority of identifiable otoliths were Chinook salmon, but coho and 

sockeye otoliths were also identified. 

Several prey species in the “other” category are worth noting because they contributed 

significantly (> 2%) to overall harbour seal diet in one of the two seasons (all estuaries and years 
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combined). Three-spined stickleback (Gasterosteus aculeatus) comprised 7.5% of overall seal 

diet in the spring season and eulachon (Thaleichthys pacificus) comprised 5.5% of the spring diet 

as well. In the fall season, shiner perch (Cymatogaster aggregata) made up 5.3% of overall seal 

diet and Pacific staghorn sculpin (Leptocottus armatus) contributed 3.5%. 

 

5.5 Discussion 

We applied DNA metabarcoding diet analysis and morphological prey hardparts analysis 

to 1,240 harbour seal scat samples collected from haulout sites in the Strait of Georgia, Canada. 

We then merged data generated from both methods to estimate the species and life stages of 

salmon consumed by seals to facilitate predator-prey modeling. The vast majority of our samples 

containing salmon were assigned to a life stage (juvenile of adult) based on the co-occurrence of 

salmon bones in the sample or collection month. Comparisons between our study and historic 

harbour seal diet indicate that adult salmon consumption by harbour seals increased substantially 

since the 1980s―and our methods comparison suggests that juvenile salmon consumed by seals 

may be particularly underestimated using only hardparts techniques. The combined hardparts and 

DNA data enabled us to identify clear seasonal trends in seal consumption of salmon species that 

are specific to salmon life stage. 

 

5.5.1 Diet analysis methods 

Pinniped diet analysis using DNA metabarcoding is a relatively new technique that offers 

several advantages over previous molecular diet analysis tools (Deagle et al. 2009; Clare 2014; 

Symondson and Harwood 2014). Prior studies have mostly relied on species or group-specific 

primer sets and gel-based methods to identify pinniped prey; often limiting DNA identification 

to only a subset of prey taxa and requiring a mathematical model to convert prey occurrences 

into diet percentages (Purcell et al. 2004; Parsons et al. 2005; Tollit et al. 2009). Quantitative 

real-time PCR (qPCR) can be used with taxon specific primers for prey quantification from scat 

DNA, but the global diet is difficult and costly to calculate using many different species specific 

primers (Matejusová et al. 2008; Bowles et al. 2011; Matejusová et al. 2012). Conversely, DNA 

metabarcoding diet analysis employs universal primers to simultaneously amplify many (if not 

all) prey species, relying on high-throughput DNA amplicon sequencing to identify and quantify 
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prey. Furthermore, amplicons of many individual samples can now be sequenced simultaneously 

and differentiated using bioinformatic techniques, dramatically reducing the per sample cost of 

DNA diet analysis. 

Proportional estimates of predator global diet are important for calculating estimates of 

prey consumption such as the numbers of individual fish eaten by a pinniped population (Olesiuk 

1993; Winship and Trites 2003; Howard et al. 2013). In our study, prey DNA sequence 

percentages were averaged from large numbers of individual seal scat samples to calculate 

population level diet percentages. This approach generally assumes a quantitative relationship 

between DNA sequence read proportions from seal scat samples, and the overall biomass 

proportions of prey consumed by the seal population. Captive feeding studies with pinnipeds and 

other marine predators have indicated that the relationship between prey DNA sequence 

percentage and prey biomass is not linear, but most studies have ultimately concluded that DNA 

metabarcoding can be treated as a semi-quantitative tool (Deagle et al. 2010; Pompanon et al. 

2012; Thomas et al. 2014). In addition, studies such as ours which aim to characterize the diets 

of consumer populations appear to be less influenced by quantification biases than studies 

focused on the diets of individual animals (Thomas et al. unpubl. data). The accuracy of our 

harbour seal DNA diet estimates could likely be improved by creating a complete harbour seal 

prey library of tissue mix standards and applying species-specific correction factors (Thomas et 

al. unpubl. data). 

Merging harbour seal DNA diet data with prey hardparts information enabled us to 

estimate the proportions of adult and juvenile salmon consumed by harbour seals, in addition to 

identifying the salmon species and percentage of the overall diet. To our knowledge, these are 

the first such estimates from pinniped scat samples. The method we created to assign salmon 

species to life stage relied first on the co-occurrence of salmon bones in the individual scat, then 

on occurrences of salmon bones in scats collected at the same site/month, and as a last resort, 

assignment was made based on a fixed seasonal ratio of adults to juvenile salmon. This design 

prioritizes the best available information to assign the salmon life stages. 

Three pieces of evidence support the appropriateness of our method for assigning a life 

stage to salmon species in harbour seal diet. First, 93% of samples containing salmon DNA were 

assigned to life stage based on salmon bone occurrences in the same scat sample or in scat 
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samples collected in the same location and month. Only 7% of salmon samples relied on the 

fixed season ratio to assign salmon life stage. Second, the fixed season ratio (assuming juvenile 

salmon consumption in spring, and adult salmon consumption in fall) is generally supported by 

the occurrences of adult and juvenile salmon bones in those seasons (Figure B-2). The only 

major exception to this assumption was the occurrence of adult sockeye salmon in July in the 

Fraser River estuary; adults of all other species were primarily consumed in what we defined as 

the fall season. The final piece of evidence supporting our salmon life stage assignment protocol 

is the fact that the resulting estimates of harbour seal diet demonstrate a clear functional response 

by seals to the seasonal abundances of salmon, which corresponds well to the movements of 

adult and juvenile salmonids in the Strait of Georgia (Quinn 2005).  

Our study focused on the diet of a piscivorous marine mammal. However, the framework 

we used to merge DNA and hardparts data could be applied to any study system in which it is 

possible to recover both DNA and hard prey structures from diet samples. The diets of arthropod 

predators for example could potentially be refined to prey life stages, if exoskeleton fragments in 

predator scats could be identified to arthropod life stage (Clare et al. 2009; Clare et al. 2014). 

Similarly, the age classes of small mammals consumed by terrestrial predators can be estimated 

based on the co-occurrence of DNA in predator feces and animal bones for which age-bone size 

relationships have been established (Longland and Jenkins 1987; Shehzad et al. 2012). Because 

prey life stage has such a large influence on the ecosystem dynamics introduced by predation, 

there is a need for trophic ecologists to produce predator diet data that is both species and life 

stage specific. 

 

5.5.2 Food habits of harbour seals in estuaries 

In addition to supporting methodological advancement, our analysis also provides new 

insight into the foraging behaviour of harbour seals in the Strait of Georgia. The observed 

increase in harbour-seal salmon consumption since the 1980s was unexpected, indicating a 

nearly threefold increase in fall salmon consumption based on directly comparable analyses. This 

increase in salmon consumption also appears to have corresponded with a large decrease in the 

importance of gadoids in harbour seal diet in both seasons. DNA analysis of the 2012-2013 

samples confirmed these temporal changes in harbour seal diet. 
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A potential but improbable explanation for the observed increase in fall salmon 

consumption is that differences in seal diet could be due to sampling differences between the two 

periods. The 1980s study sampled a greater number of estuarine harbour seal haulout sites. 

However, both studies used sampling sites representing the same major geographical areas. For 

example, the Comox and Cowichan Bay haulout sites contributed largely to both the 1980s study 

and ours, and the Fraser River region was also represented in both studies. While we chose a 

more geographically focused sampling design to detect localized seasonal trends, our sampling 

sites were chosen specifically to be comparable with the estuarine sites used in Olesiuk et al. 

(1990). 

The more plausible explanation for the increase in harbour seal salmon consumption is 

that their primary prey in the 1980s (gadoids―mostly Pacific hake) decreased substantially in 

abundance since the previous seal diet study. A 1998 survey of Pacific hake in the Strait of 

Georgia placed the hake biomass at less than half (i.e. 42%) of the biomass observed in a 

comparable hake survey in 1981 (Kieser et al. 1999). If this downward trend in hake biomass 

continued, harbour seals in our study region would have likely switched to other prey resources 

(e.g. adult salmon) that were more readily available (Stephens and Krebs 1986). Furthermore, the 

number of harbour seals in the Strait of Georgia more than doubled since the previous diet study, 

indicating that different prey resources were likely exploited by harbour seals to sustain the 

increased population (Olesiuk 2009). By contrast, the percentage of Pacific herring in harbour 

seal diet was remarkably consistent between time periods, and was also consistent between the 

two diet analysis techniques. 

When the DNA-based method was applied to the same set of scat samples used for 

morphological analyses, the percentage of salmon in harbour seal diet increased in both seasons. 

The proportional increase in salmon consumption was particularly apparent in the spring season, 

when the diet percentage of salmon doubled using DNA metabarcoding. This could indicate a 

taxonomic bias in DNA amplification or sequencing that causes salmon to be overestimated 

relative to other species; although an evaluation of the methods did not suggest a biased 

representation of salmonids (Thomas et al. in prep.). A more likely explanation for the observed 

methodological differences is that some salmon prey hardparts were completely digested, or 

salmon soft tissue was ingested without ingesting bones (e.g. “belly biting”) (Cottrell et al. 1996; 
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Hauser et al. 2008). The proportional increase in the spring season when seals primarily eat 

juvenile salmon, combined with the large number of highly eroded juvenile salmon bones in 

scats, suggests that juvenile salmon consumption by pinnipeds may be highly underestimated 

using traditional hardparts analysis. It appears likely from our analysis that many of the juvenile 

salmon eaten by seals are completely digested and therefore not detectable using hardparts 

techniques. 

The combination of a near threefold increase in fall salmon consumption by seals and a 

doubling of the seal population since the 1980s appears to be cause for concern―indicating that 

seals are likely impacting salmon stocks (Olesiuk 2009; Scordino 2010). However, the adult 

salmon species primarily consumed by harbour seals in the Strait of Georgia estuaries were not 

the species currently of conservation concern (Irvine et al. 2009; Welch et al. 2011). Seals 

mostly targeted adult chum salmon in the fall, with pinks and sockeye also contributing 

significantly to seal diet in alternate years. The populations of these species were stable overall 

or increased in the region, and appeared to be thriving despite increased predation pressure from 

seals (Irvine et al. 2009). Also interesting was the inverse interanual relationship in the 

percentage of adult Chinook salmon in seal diet relative to pink salmon in seal diet. Regional 

pink salmon runs are large in odd-numbered years and low in even-numbered years―and there 

may be a predation masking effect occurring, whereby the presence of many pink salmon in 

September reduces seal predation pressure on adult Chinook salmon (Holling 1966; Evans 

2013). These results emphasize the importance of knowing the particular species consumed by 

predators when assessing their potential impacts on prey populations. 

While the species composition of adult salmon eaten by harbour seals does not raise 

concern for salmon stocks, the composition of juvenile salmon species in seal diet displayed the 

opposite trend. Harbour seals consumed higher percentages of juvenile coho, Chinook, and 

sockeye salmon in the Strait of Georgia, despite the exceeding abundance of juvenile chum 

salmon in the region (Beamish et al. 2012). This implies that harbour seals may be selective (i.e. 

consuming disproportionately to fish abundance) of the juvenile salmon species they choose to 

pursue (Manly et al. 1993). Positive selection often occurs when less abundant prey species are 

more profitable (e.g. contains higher energy density, or requires less energy to capture) than the 

more abundant prey species (Stephens and Krebs 1986; Tollit et al. 1997a). Interestingly, all 
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three of the juvenile salmon species consumed by seals in relatively high proportion (coho, 

Chinook, and sockeye) consist of stocks that undergo seaward migration at age > 1 y. In contrast, 

the juvenile salmon species eaten by the seals in smaller proportions (pink and chum) all of out-

migrate at age < 1 y (Randall et al. 1987; Quinn 2005). This implies that harbour seals may be 

selecting for older, larger salmon smolts that are more profitable to pursue than chum and pink 

fry. These older juvenile salmonids may also better fit the prey search image of harbour seals, 

both in terms of size and coloration (Tollit et al. 1997a).  

Although the percentages of juvenile salmon species in harbour seal diets were relatively 

small (generally < 5% per species), such percentages can be significant when converted to 

numbers of fish —particularly when a large number of predators consume many small-bodied 

prey species. For example, ~40,000 adult harbour seals (the current population in the Strait of 

Georgia) consuming an average of 2 kg per day would eat ~6 million coho smolts in one month, 

assuming the average hatchery coho smolt weighs ~ 20g, and seal diet consists of 5% juvenile 

coho (Olesiuk 1993; Olesiuk 2009; Howard et al. 2013). Considerably more smolts could be 

consumed if the smolts were smaller (e.g., wild coho smolts).  

This rough estimate of the numbers of coho smolts consumed also assumes that all seals 

in the Strait consume juvenile salmon at the same average rate, which is unlikely to be true for 

the many seals that inhabit non-estuary haulout sties. In addition, measured salmon predation is 

likely to be substantially lower at non-estuary harbour seal haulouts sites. However, it is worth 

noting that the single highest percentage of juvenile Chinook salmon in seal diet for any stratum 

in our study was from the Belle Chain collection site (a non-estuary harbour seal haulout) (Table 

1). In-depth modeling will be required to produce robust estimates of harbour seal consumption 

of juvenile and adult salmon species in the Strait of Georgia based on the dietary data we 

generated. 

 

5.5.3 Accuracy of juvenile salmon percentage of seal diet 

Given that harbour seals have the potential to largely impact juvenile salmonids when 

juveniles comprise a relatively low percentage of the overall seal diet, it is important to produce 

accurate seal diet estimates for those species. We have focused on using DNA sequence counts 

to infer the relative biomasses of prey consumed by seals — an approach that now has well  
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Figure 5.8 Comparison of three different methods used to calculate harbour seal population diet percentages 

from the same set of scat samples in two different seasons: Spring (when harbour seals primary eat juvenile 

salmon); Fall (when harbour seals mostly eat adult salmon).  The methods applied were, a) Split Sample 

Frequency of Occurrence of prey hardparts (blue), b) Split Sample Frequency of Occurrence of prey DNA 

(yellow), c) DNA sequence percentages resulting from DNA metabarcoding (red). Data are from Comox, 

2012. 
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documented biases. To truly understand the numerical accuracy of seal DNA metabarcoding diet 

estimates (at the individual or population level) would require extensive feeding trials that are 

beyond the scope of this work, and are likely infeasible due to the number of factors that would 

need to be evaluated. Rather than attempting to quantify the accuracy of specific estimates, we 

can evaluate whether DNA sequence percentages are likely to produce diet estimates that are 

more or less accurate compared to the other available methods.  

To circumvent the biases with DNA sequence counts, trophic ecologists often remove the 

quantitative information from DNA metabarcoding studies and present a presence/absence based 

index such as frequency of occurrence. This is similar to the way that scat hardparts data are 

often treated, and the way we presented them here (Split Sample Frequency of Occurrence). 

Using scats collected from one haulout site, we compared diet percentages calculated three ways 

using the same set of samples: 1) diet % based on morphological identification of prey bones and 

Split Sample Frequency of Occurrence (i.e. Hardparts SSFO), 2) removing the quantitative DNA 

sequence information and treating each species occurrence equally ( i.e. DNA SSFO), and 3) 

retaining the quantitative information from sequence counts and assuming a relationship between 

DNA sequences % and prey biomass (i.e. DNA sequences %) . Comparing these three methods 

with previous studies provides insights into which technique is most likely to produce the best 

estimate of juvenile salmon in harbour seal diet (Figure 5.8). 

If DNA sequence percentages produce consistently biased estimates of harbour seal 

salmon consumption, we would expect that DNA sequences % would be largely different from 

the other two occurrence-based estimates. This was however not the case. When seals were 

eating primarily adult salmon (fall), the “All salmonids” combined percentages of the diet were 

quite similar between the three methods we compared (Figure 5.8). However, in the spring 

months when seals were mostly eating juvenile salmon, both DNA techniques produced higher 

diet estimates for salmon (Figure 5.8). As stated previously, this is most likely due to the 

complete digestion of juvenile salmon bones which leads to lower salmon detection when 

hardparts techniques are used. What was unexpected was the large increase in spring salmon 

percentage when prey DNA sequences were treated as occurrences (SSFO) as compared to DNA 

sequences %. This suggests that many seal scat samples in the spring contained salmon DNA in 

small quantities, which were then overestimated by treating DNA detections as occurrence data. 



112 

 

Interestingly, in many cases the use of DNA sequence percentages produced estimates that were 

more similar to hardparts SSFO than DNA SSFO — despite the two DNA estimates being 

derived from the exact same sequence data. 

Based on this evidence, and the fact that prey DNA sequence percentages generally 

increase with prey biomass (Chapter 4), we conclude that DNA sequences % is likely the most 

accurate method for estimating the percentages of juvenile salmon consumed by harbour seals. 

Where hardparts methods appear to underestimate juvenile salmon predation and DNA SSFO 

likely overestimates the importance of juvenile salmon, DNA sequence percentages produce a 

conservative and realistic estimate of diet. Despite the factors that are known to influence 

sequence counts in DNA metabarcoding studies, our findings suggest that using DNA sequence 

percentages is currently superior to methods that treat all prey detections as occurrences of equal 

weight. Therefore, we believe that the data set presented here currently provides the most 

accurate estimate available for the proportion of juvenile salmon species in the diets of harbour 

seals in the Strait of Georgia.  

 

5.6 Conclusion 

Demand is increasing for better descriptions of predator diets, including information 

about the species and life stage of prey, the proportional biomass consumed, as well as the 

specific sub-population of prey impacted by the predators. Trophic ecologists are responding to 

this demand by exploring alternative methods to analyze diets (such as merging data from 

multiple dietary methods to create consensus predator diet data) which provide information that 

cannot be produced by traditional techniques. We demonstrated how DNA metabarcoding diet 

analysis and prey hardparts analysis can be merged to estimate the species, life stage, and 

relative proportion of salmon consumed by harbour seals. The general approach we outlined for 

doing so can be used in a variety of study systems to derive better information about predator 

diets. The combination data product we generated enabled us to identify seasonal trends in 

harbour seal predation on different life stages of salmon, in addition to allowing us to document 

a major shift in harbour seal foraging behaviour since the 1980s. Ideally, this approach can be 

integrated into an ongoing marine predator diet survey, recognizing that animal diets can change 

continuously in response to changes in prey abundance and intraspecific competition. 
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Chapter 6: General conclusion 

The primary objective of my thesis research was to generate harbour seal diet information 

that could be used to estimate the numbers of juvenile salmon consumed by seals in the Strait of 

Georgia. However, it became apparent upon starting the project that the existing pinniped diet 

analysis methodologies were insufficient to produce those estimates because they could not 

provide the necessary detail about prey consumed by seals. A new diet analysis technique was 

needed to generate the desired harbour seal consumption estimates for salmon. The emerging 

diet analysis techniques using DNA metabarcoding offered tremendous potential to quantify the 

species proportions of prey consumed by harbour seals, and when combined with traditional 

hardparts techniques could be used to estimate both the species and life stages of salmon eaten 

by seals in the Strait. I therefore sought to develop a DNA metabarcoding diet analysis tool for 

Pacific harbour seals specifically, in addition to evaluating the quantitative potential of the 

methodology as it applies to the study of any animal diet. 

 

6.1 Summary of research and findings 

Chapter 2 explored the factors that could potentially influence sequence read counts in 

DNA metabarcoding diet studies that could bias estimates of species proportional biomass based 

on DNA sequence reads. Numerous factors were evaluated in the study, ranging from bias 

introduced by short primer tags to biases generated during bioinformatic filtering. The general 

conclusion from this work was that virtually every factor we evaluated exhibited some biasing 

influence on the species DNA sequence read counts. Taxonomic bias, or the preferential 

amplification and sequencing of certain prey DNA sequences over other prey species, was 

particularly influential. Although it was confirmed that scats of predators fed a similar diet 

produce similar DNA sequence percentages, the results of the study suggest that it is unwise for 

researchers to assume a direct relationship between prey biomass % and scat DNA sequences %. 

Furthermore, the influence of various biasing factors in DNA metabarcoding diet studies is 

highly related to the particular study system. For example, studies in which priming regions are 

not highly conserved will be more subject to taxonomic biases in amplification, and other biases 

such as those produced by primer tags are sequence specific. Therefore it should be considered 

best practice for researchers to evaluate the range of potential biases inherent to their study 
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system when undertaking any new DNA metabarcoding diet study. This is especially important 

when DNA sequence counts are used as a proxy for prey biomass; although even basic frequency 

of occurrence metrics can be affected when biases are extreme.  

The fact that it is possible to achieve consistent prey DNA sequence percentages from the 

scats of predators fed a similar diet was intriguing. It implies that it may be possible to correct 

for the biases detected in Chapter 2 using numerical correction factors, if the sources of bias are 

consistent and quantifiable. Given the number of biases identified in Chapter 2, it appeared 

unrealistic to account for each source of bias individually. I therefore sought to find some way of 

accounting for as many sources of bias as possible with a minimal number of corrections. 

Preparation of control materials (in this case prey tissue mixes) sequenced alongside scat 

samples seemed a promising method that could account for many sources of bias simultaneously. 

Thus in Chapter 3 I used a prey tissue mix matching captive harbour seal diet and scat samples to 

create prey-specific numerical correction factors that account for methodological biases and 

template copy number bias. I also evaluated which characteristics of the prey species could 

potentially be used to account for biases introduced by differential prey digestion (inferred by the 

difference between scat DNA % and tissue mix DNA %).  

I found that the majority of bias in the study system could be accounted for using the prey 

tissue mix, implying that the primary source of bias was either due to prey differences in 

template DNA copy number or preferential PCR amplification and sequencing. The degree of 

species-specific bias detected in the tissue mixture was well predicted by the prey fish red 

muscle %, further supporting the idea that differential mtDNA density (i.e. template copy 

number) is the primary source of bias in the system. Differential prey digestion was the lesser 

source of bias, and an analysis of prey composition indicated that a correction based on prey 

lipid content could entirely account for prey digestion bias in pinniped diet studies. While these 

findings were exciting scientifically, the difficulty encountered was in applying these findings to 

samples of unknown composition (such as field studies of wild harbour seals). It is not possible 

to design prey tissue mixes that perfectly match the diets of wild seals (because the diet is 

unknown), and variability in fish lipid content both seasonally and geographically inhibits 

digestion bias correction. For numerical correction factors to be employed in field studies of wild 

harbour seals, an alternative approach would be required.  
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The most feasible alternative approach for tissue based correction that I could imagine 

was the generation of a 50/50 Tissue Correction Factor prey library (see Chapter 4). Under this 

scenario the species-specific bias for any particular prey would be quantified relative to a control 

species that is held constant in all mixtures of the prey library. A mathematical formula can then 

be used to calculate a numerical correction for any species in the prey library, and those 

corrections can be applied to sequence counts generated from seal scat samples of unknown 

composition. My experiments in Chapter 4 supported the notion that DNA sequence count biases 

are indeed specific to the particular prey species, varying little between individual fishes or 

between replicate tissue mix samples. One unexpected result in Chapter 4 was the influence of 

the input mass percentage on the degree of bias (and by extension the correction factor). Species 

present in low proportion were overestimated and species in high proportion were 

underestimated. This result has implications for all kinds of studies aiming to quantify DNA or 

organisms using read counts from high-throughput amplicon sequencing; although proportional 

bias appeared less influential for more complex species mixtures. 

Application of 50/50 tissue correction factors greatly improved the proportional estimates 

of multi-species mixtures based on DNA sequence read percentages. However, proportional 

estimates for individual scat samples were much more influenced by correction factors than 

population diet summaries (i.e. proportional averages generated from many scat samples 

combined). Predator consumption estimates typically rely on population diet averages, and the 

accuracy of diet percentages for any individual sample is less important for answering questions 

of population prey consumption. This begs the question, when is it actually important to achieve 

highly accurate individual sample diet estimates?  

My rationale for pursuing accurate proportional estimates for individual samples was that 

consistent species biases (such as those I have demonstrated for harbour seal prey) have the 

potential to largely affect even population level summaries. This would be particularly true if the 

population diet was comprised few species (low species diversity) that have strong biases, or 

biases in opposing directions. In this case, population summaries could be strongly influenced by 

individual species biases and correction factors are likely necessary. However, when diet 

diversity is high, species-specific biases likely have much less influence on population diet 

summaries. Ultimately the question of whether or not to pursue correction factors should be 



116 

 

properly evaluated using an in silico modeling exercise wherein variability of the population diet 

estimate is quantified under alternative diet diversity and bias magnitude scenarios.  

At this point in my research I was posed with a dilemma. Should I continue to develop 

these correction factors for application to my field collected harbour seal scat samples, or should 

I move forward without corrections for the population diet summaries? Furthermore, if 

corrections were not applied, should I treat the DNA sequence data as frequency of occurrence 

(i.e. presence or absence of diet species) or should I continue to use the species sequence count 

percentages as a proxy for diet biomass percentage? The answer to the first question was simply 

a matter of time and money. To create an exhaustive prey library for harbour seals would be a 

large undertaking requiring the collection of dozens of prey specimens (many of which are 

difficult to acquire) and many hours of grinding fish and creating tissue mixtures. While I 

continue to believe that this may be a worthwhile endeavor, it should first be shown 

mathematically that the increase in population estimate accuracy is worth the months of effort 

that would be required.  

The question of whether or not to remove the “quantitative” information from the prey 

DNA sequence counts is a continued matter of debate among molecular trophic ecologists. 

Ultimately either diet metric used (frequency of occurrence or DNA sequence %) will be 

converted into a proportional diet estimate and used to quantify prey consumption. Therefore, the 

real question is, can more accurate diet estimates be achieved by converting prey occurrences to 

percentages (e.g. Split Sample Frequency of Occurrence) or by using DNA sequence 

percentages?  

I chose to use uncorrected DNA sequence percentage as a proxy for prey biomass 

percentage for two reasons. First, my prey tissue mixing experiments indicated that an increase 

in species proportional biomass does increase the number of prey DNA sequences, even though 

the relationship is not perfectly linear and the intercept varies by species. My results support the 

idea that DNA sequence counts are semi-quantitative regardless of the known biases. My second 

reason for using uncorrected DNA sequence percentages is that frequency of occurrence metrics 

are highly sensitive to contamination, even very low level contamination of species DNA in a 

sample. One DNA sequence from a contaminating species in a sample is equal to multiple 

thousands of DNA sequences from a true diet species in the sample, if Split Sample Frequency 
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of Occurrence is used to create the diet summary. Given that low level contamination has been 

demonstrated between multiplexed samples and between Next-gen sequencing runs, the use of 

DNA sequence percentages is arguably the more conservative approach to achieve a proportional 

diet summary. 

Throughout my PhD research, I have attempted to devise novel solutions to difficult 

methodological problems, and believe that I achieved moderate success with the use of tissue-

based and/or lipid-based correction factors for DNA sequence counts. However, I think that 

Chapter 5 reflects my larger contribution by combining scat DNA sequence percentages with 

prey bones to estimate the species and life stages of salmon consumed by seals. A dataset 

providing age-specific proportional estimates of the salmon species consumed by seals 

represents a significant step forward for the field. In addition, the knowledge that harbour seals 

in the Strait of Georgia appear to target adult salmon of low conservation concern and juvenile 

salmon of high conservation concern, is highly valuable information for regional fisheries 

managers. Moving forward, I will be working with a fisheries modeler to create estimates of 

harbour seal salmon consumption from the dataset generated in Chapter 5. 

 

6.2 Applying DNA metabarcoding diet analysis in other study systems 

The process of applying the methods outlined in my thesis to other study systems or 

predator species would follow a similar procedure to that used in any new DNA metabarcoding 

study. The first step is to identify the potential range of food species taxonomic groups, using the 

results of previous diet studies and animal observations to narrow down the list of potential food 

species. Once the taxonomic list has been established, the next step is to find genetic barcoding 

markers (e.g. COI, 16S, 18s) that contain suitable priming regions which are highly conserved 

for all potential prey, and also flank a short (< 300 bp) variable marker region useful for species 

identification. Once the ideal metabarcoding marker has been identified, primers should be tested 

and validated using the extracted DNA of known food species. 

At this stage in the project development, it is likely worthwhile to evaluate any potential 

taxonomic biases in prey species amplification, if the researchers intend to use DNA sequence 

counts to inform consumer diet proportions. A 50/50 tissue mixture prey library such as the one 

described in Chapter 4 is one method that could be used to evaluate taxon-specific biases, 
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informing researchers if they should expect large differences in amplicon DNA sequences from 

the same mass proportions of different prey species. Depending on the research question and the 

importance of accurately determining the proportions of prey in individual scats, researchers 

could proceed simply knowing where to expect taxonomic bias in DNA sequence counts. If it is 

determined that a high degree of accuracy is needed at the individual scat level, correction 

factors could be explored similar to the approach we outlined in Chapters 3 and 4.  

The final project development steps are to generate a prey library of species sequences 

for the DNA metabarcoding marker, and to create a bioinformatic pipeline for processing 

samples of unknown composition. In my thesis work, I benefited from the DNA barcoding 

efforts of many other researchers who were actively producing 16S DNA sequences for the 

various fishes of the North Pacific. Marker DNA sequences from voucher specimens are often 

made publically available in NCBI GenBank and the Barcode of Life Database (BoLD) 

(Ratnasingham and Hebert 2007; Benson et al. 2012). For study systems that are less well 

described, researchers may need to produce DNA sequence data for their taxonomic groups of 

interest following the standardized protocols for producing DNA barcode data (Ratnasingham 

and Hebert 2007). Lastly, a bioinformatic pipeline must be established to demultiplex the DNA 

sequences of multiple samples sequenced simultaneously (if samples are multiplexed), and to 

identify the taxonomy of the DNA sequences assigned to diet samples. Population diet 

summaries can then be produced for the consumer of interest by combining the resulting diet 

data from multiple individual samples collected in the same region or time period. 

 

6.3 Future directions 

The field of DNA metabarcoding diet analysis continues to grow rapidly as the cost of 

next-gen DNA sequencing drops, and more user-friendly or established bioinformatic pipelines 

become available to ecologists. It is reasonable to expect that this type of diet analysis will soon 

become an established methodology widely used by ecologists, similar to stable isotope analysis 

(for example). To mitigate the now well-characterized biases inherent to amplicon sequencing, it 

appears the field is attempting to move away from targeted PCR enrichment to other approaches 

that may produce less biased results. Simple shotgun sequencing of all DNA present in a sample 

is one way to reduce PCR enrichment bias, in addition to other alternatives such as filter-based 
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mitochondrial enrichment. Straight DNA sequencing unfortunately produces a huge amount of 

sequence data that is not useful for answering the question of interest, and substantially increases 

the cost of analysis. I suspect that any new approach will ultimately be shown to introduce 

certain biases when researchers fully scrutinize the process. However such continued efforts to 

reduce methodological bias are valuable and may ultimately identify a superior method to 

amplicon sequencing.  

One thing that I think has been lacking in the captive feeding study literature is an 

evaluation of alternative methods (quantitative DNA analysis vs hard-parts analysis), where the 

diets of the predators are randomized and contain a variety of different species; thereby 

simulating a population of scat samples more similar to what is found in studies of wild animals. 

Furthermore, these captive studies should be blind trials such that the analyst (morphological 

taxonomist or DNA bioinformatician) does not know what the captive predator species has been 

fed. With that type of study design it would be possible to empirically measure the accuracy of 

population diet summaries generated using alternative techniques and determine which is 

ultimately superior — both in terms of biomass estimates and taxonomic resolution/accuracy. 

That, combined with an in silico analysis of species-specific biases in DNA metabarcoding 

studies (as previously mentioned) would be useful for guiding future DNA diet studies involving 

pinnipeds. 

Until those additional methodological studies have been conducted, I believe that the 

approach outlined in Chapter 5 is currently the best available method for characterizing the diets 

of seals and sea lions. My assessment is based on the relative data quality provided by the 

technique with respect to taxonomic resolution, quantitative capability, prey age-class 

specificity, and per-sample cost of processing. While I do not recommend the abandonment of 

traditional diet analysis methods, I do suggest that pinniped ecologists consider transitioning 

their ongoing diet studies to a hybrid DNA/hard-parts approach such as the one we used in 

Chapter 5. Time will ultimately determine which pinniped diet analysis method is best, and I 

look forward to observing the future evolution of DNA metabarcoding in the field of trophic 

ecology. 
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Appendices 

 

Appendix A   Supplementary tables and figures for Chapter 2  

 

Table A-1 Captive harbour seal feeding records used to calculate a combined mean diet for all five seals 

based on the masses of species consumed (Capelin – CAP, Herring – HER, Mackerel – MAC, Squid – SQU). 

Fish quantities are reported in pounds (0.454 kg). 

  

DATE CAP HER MAC SQU Total CAP HER MAC SQU Total CAP HER MAC SQU Total CAP HER MAC SQU Total CAP HER MAC SQU Total

1-Jul-11 1.75 1.25 0.50 0.50 4.00 2.50 2.00 1.00 1.00 6.50 1.25 0.75 0.50 0.50 3.00 1.75 1.25 0.50 0.50 4.00 1.25 0.75 0.50 0.50 3.00

2-Jul-11 1.75 1.25 0.50 0.50 4.00 2.50 2.00 1.00 1.00 6.50 1.25 0.75 0.50 0.50 3.00 1.75 1.25 0.50 0.50 4.00 1.25 0.75 0.50 0.50 3.00
3-Jul-11 1.75 1.25 0.50 0.50 4.00 2.50 2.00 1.00 1.00 6.50 1.25 0.75 0.50 0.50 3.00 1.75 1.25 0.50 0.50 4.00 1.25 0.75 0.50 0.50 3.00
4-Jul-11 1.75 1.25 0.50 0.50 4.00 2.50 2.00 1.00 1.00 6.50 1.25 0.75 0.50 0.50 3.00 1.75 1.25 0.50 0.50 4.00 1.25 0.75 0.50 0.50 3.00
5-Jul-11 1.75 1.25 0.50 0.50 4.00 2.50 2.00 1.00 1.00 6.50 1.25 0.75 0.50 0.50 3.00 1.75 1.25 0.50 0.50 4.00 1.25 0.75 0.50 0.50 3.00
6-Jul-11 1.75 1.25 0.50 0.50 4.00 2.50 2.00 1.00 1.00 6.50 1.25 0.75 0.50 0.50 3.00 1.75 1.25 0.50 0.50 4.00 1.25 0.75 0.50 0.50 3.00
7-Jul-11 1.75 1.25 0.50 0.50 4.00 2.50 2.00 1.00 1.00 6.50 1.25 0.75 0.50 0.50 3.00 1.75 1.25 0.50 0.50 4.00 1.25 0.75 0.50 0.50 3.00
8-Jul-11 1.75 1.25 0.50 0.50 4.00 2.50 2.00 1.00 1.00 6.50 1.25 0.75 0.50 0.50 3.00 1.75 1.25 0.50 0.50 4.00 1.25 0.75 0.50 0.50 3.00
9-Jul-11 1.75 1.25 0.50 0.50 4.00 2.50 2.00 1.00 1.00 6.50 1.25 0.75 0.50 0.50 3.00 1.75 1.25 0.50 0.50 4.00 1.25 0.75 0.50 0.50 3.00

10-Jul-11 1.75 1.25 0.50 0.50 4.00 2.50 2.00 1.00 1.00 6.50 1.25 0.75 0.50 0.50 3.00 1.75 1.25 0.50 0.50 4.00 1.25 0.75 0.50 0.50 3.00
11-Jul-11 1.75 1.25 0.50 0.50 4.00 2.50 2.00 1.00 1.00 6.50 1.25 0.75 0.50 0.50 3.00 1.75 1.25 0.50 0.50 4.00 1.25 0.75 0.50 0.50 3.00
12-Jul-11 1.75 1.25 0.50 0.50 4.00 2.50 2.00 1.00 1.00 6.50 1.25 0.75 0.50 0.50 3.00 1.75 1.25 0.50 0.50 4.00 1.25 0.75 0.50 0.50 3.00
13-Jul-11 1.75 1.25 0.50 0.50 4.00 2.50 2.00 1.00 1.00 6.50 1.25 0.75 0.50 0.50 3.00 1.75 1.25 0.75 0.75 4.50 1.25 0.75 0.50 0.50 3.00
14-Jul-11 1.75 1.25 0.50 0.50 4.00 2.50 2.00 1.00 1.00 6.50 1.25 0.75 0.50 0.50 3.00 1.75 1.25 0.75 0.75 4.50 1.25 0.75 0.50 0.50 3.00
15-Jul-11 1.75 1.25 0.50 0.50 4.00 2.50 2.00 1.00 1.00 6.50 1.25 0.75 0.50 0.50 3.00 1.75 1.25 0.75 0.75 4.50 1.25 0.75 0.50 0.50 3.00
16-Jul-11 1.75 1.25 0.50 0.50 4.00 2.50 2.00 1.00 1.00 6.50 1.25 0.75 0.50 0.50 3.00 1.75 1.25 0.75 0.75 4.50 1.25 0.75 0.50 0.50 3.00
17-Jul-11 1.75 1.25 0.50 0.50 4.00 2.50 2.00 1.00 1.00 6.50 1.25 0.75 0.50 0.50 3.00 1.75 1.25 0.75 0.75 4.50 1.25 0.75 0.50 0.50 3.00
18-Jul-11 1.75 1.25 0.50 0.50 4.00 2.50 2.00 1.00 1.00 6.50 1.25 0.75 0.50 0.50 3.00 1.75 1.25 0.75 0.75 4.50 1.25 0.75 0.50 0.50 3.00
19-Jul-11 1.75 1.25 0.50 0.50 4.00 3.00 2.25 1.25 1.00 7.50 1.50 1.00 0.50 0.50 3.50 2.00 1.50 0.75 0.75 5.00 1.25 0.75 0.50 0.50 3.00
20-Jul-11 1.75 1.25 0.50 0.50 4.00 3.00 2.25 1.25 1.00 7.50 1.50 1.00 0.50 0.50 3.50 2.00 1.50 0.75 0.75 5.00 1.50 1.00 0.50 0.50 3.50
21-Jul-11 1.75 1.25 0.50 0.50 4.00 3.00 2.25 1.25 1.00 7.50 1.50 1.00 0.50 0.50 3.50 2.00 1.50 0.75 0.75 5.00 1.50 1.00 0.50 0.50 3.50
22-Jul-11 1.75 1.25 0.50 0.50 4.00 3.00 2.25 1.25 1.00 7.50 1.50 1.00 0.50 0.50 3.50 2.00 1.50 0.75 0.75 5.00 1.50 1.00 0.50 0.50 3.50
23-Jul-11 1.75 1.25 0.50 0.50 4.00 3.00 2.25 1.25 1.00 7.50 1.50 1.00 0.50 0.50 3.50 2.00 1.50 0.75 0.75 5.00 1.50 1.00 0.50 0.50 3.50
24-Jul-11 1.75 1.25 0.50 0.50 4.00 3.00 2.25 1.25 1.00 7.50 1.50 1.00 0.50 0.50 3.50 2.00 1.50 0.75 0.75 5.00 1.50 1.00 0.50 0.50 3.50
25-Jul-11 1.75 1.25 0.50 0.50 4.00 3.00 2.25 1.25 1.00 7.50 1.50 1.00 0.50 0.50 3.50 2.00 1.50 0.75 0.75 5.00 1.50 1.00 0.50 0.50 3.50
26-Jul-11 1.75 1.25 0.50 0.50 4.00 3.00 2.25 1.25 1.00 7.50 1.50 1.00 0.50 0.50 3.50 2.00 1.50 0.75 0.75 5.00 1.50 1.00 0.50 0.50 3.50
27-Jul-11 1.75 1.25 0.50 0.50 4.00 3.00 2.25 1.25 1.00 7.50 1.50 1.00 0.50 0.50 3.50 2.00 1.50 0.75 0.75 5.00 1.50 1.00 0.50 0.50 3.50
28-Jul-11 1.75 1.25 0.50 0.50 4.00 3.00 2.25 1.25 1.00 7.50 1.50 1.00 0.50 0.50 3.50 2.00 1.50 0.75 0.75 5.00 1.50 1.00 0.50 0.50 3.50
29-Jul-11 1.75 1.25 0.50 0.50 4.00 3.00 2.25 1.25 1.00 7.50 1.50 1.00 0.50 0.50 3.50 2.00 1.50 0.75 0.75 5.00 1.50 1.00 0.50 0.50 3.50
30-Jul-11 1.75 1.25 0.50 0.50 4.00 3.00 2.25 1.25 1.00 7.50 1.50 1.00 0.50 0.50 3.50 2.00 1.50 0.75 0.75 5.00 1.50 1.00 0.50 0.50 3.50
31-Jul-11 1.75 1.25 0.50 0.50 4.00 3.00 2.25 1.25 1.00 7.50 1.50 1.00 0.50 0.50 3.50 2.00 1.50 0.75 0.75 5.00 1.50 1.00 0.50 0.50 3.50
1-Aug-11 1.75 1.25 0.50 0.50 4.00 3.00 2.25 1.25 1.00 7.50 1.50 1.00 0.50 0.50 3.50 2.00 1.50 0.75 0.75 5.00 1.50 1.00 0.50 0.50 3.50
2-Aug-11 1.75 1.25 0.75 0.75 4.50 3.00 2.50 1.25 1.25 8.00 1.50 1.00 0.50 0.50 3.50 2.25 1.75 0.75 0.75 5.50 1.50 1.00 0.50 0.50 3.50
3-Aug-11 1.75 1.25 0.75 0.75 4.50 3.00 2.50 1.25 1.25 8.00 1.50 1.00 0.50 0.50 3.50 2.25 1.75 0.75 0.75 5.50 1.50 1.00 0.50 0.50 3.50
4-Aug-11 1.75 1.25 0.75 0.75 4.50 3.00 2.50 1.25 1.25 8.00 1.50 1.00 0.50 0.50 3.50 2.25 1.75 0.75 0.75 5.50 1.50 1.00 0.50 0.50 3.50
5-Aug-11 1.75 1.25 0.75 0.75 4.50 3.00 2.50 1.25 1.25 8.00 1.50 1.00 0.50 0.50 3.50 2.25 1.75 0.75 0.75 5.50 1.50 1.00 0.50 0.50 3.50
6-Aug-11 1.75 1.25 0.75 0.75 4.50 3.00 2.50 1.25 1.25 8.00 1.50 1.00 0.50 0.50 3.50 2.25 1.75 0.75 0.75 5.50 1.50 1.00 0.50 0.50 3.50
7-Aug-11 1.75 1.25 0.75 0.75 4.50 3.00 2.50 1.25 1.25 8.00 1.50 1.00 0.50 0.50 3.50 2.25 1.75 0.75 0.75 5.50 1.50 1.00 0.50 0.50 3.50
8-Aug-11 1.75 1.25 0.75 0.75 4.50 3.00 2.50 1.25 1.25 8.00 1.50 1.00 0.50 0.50 3.50 2.25 1.75 0.75 0.75 5.50 1.50 1.00 0.50 0.50 3.50
9-Aug-11 1.75 1.25 0.75 0.75 4.50 3.00 2.50 1.25 1.25 8.00 1.50 1.00 0.50 0.50 3.50 2.25 1.75 0.75 0.75 5.50 1.50 1.00 0.50 0.50 3.50

10-Aug-11 1.75 1.25 0.75 0.75 4.50 3.50 2.50 1.25 1.25 8.50 1.50 1.00 0.50 0.50 3.50 2.50 1.75 1.00 0.75 6.00 1.50 1.00 0.50 0.50 3.50
11-Aug-11 1.75 1.25 0.75 0.75 4.50 3.50 2.50 1.25 1.25 8.50 1.50 1.00 0.50 0.50 3.50 2.50 1.75 1.00 0.75 6.00 1.50 1.00 0.50 0.50 3.50
12-Aug-11 1.75 1.25 0.75 0.75 4.50 3.50 2.50 1.25 1.25 8.50 1.50 1.00 0.50 0.50 3.50 2.50 1.75 1.00 0.75 6.00 1.50 1.00 0.50 0.50 3.50
13-Aug-11 1.75 1.25 0.75 0.75 4.50 3.50 2.50 1.25 1.25 8.50 1.50 1.00 0.50 0.50 3.50 2.50 1.75 1.00 0.75 6.00 1.50 1.00 0.50 0.50 3.50
14-Aug-11 1.75 1.25 0.75 0.75 4.50 3.50 2.50 1.25 1.25 8.50 1.50 1.00 0.50 0.50 3.50 2.50 1.75 1.00 0.75 6.00 1.50 1.00 0.50 0.50 3.50
15-Aug-11 1.75 1.25 0.75 0.75 4.50 3.50 2.50 1.25 1.25 8.50 1.50 1.00 0.50 0.50 3.50 2.50 1.75 1.00 0.75 6.00 1.50 1.00 0.50 0.50 3.50
16-Aug-11 1.75 1.25 0.75 0.75 4.50 4.50 3.50 1.75 1.75 11.50 1.75 1.25 0.50 0.50 4.00 2.75 2.25 1.00 1.00 7.00 1.50 1.00 0.50 0.50 3.50
17-Aug-11 1.75 1.25 0.75 0.75 4.50 4.50 3.50 1.75 1.75 11.50 1.75 1.25 0.50 0.50 4.00 2.75 2.25 1.00 1.00 7.00 1.50 1.00 0.50 0.50 3.50

Seal #2 Seal #3 Seal #4 Seal #5Seal #1
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Table A-2 Sequences of the primers and blocking oligo used in Chapter 2 (5ˈ-3ˈ) 

 

 

 

Table A-3 Sequences of the first 70 bp of seal and fish mtDNA 16S amplicon sequences along with aligned 

blocking oligo and forward primer sequences. Identity with the seal sequence is shown as a dot. Forward 

PCR primer binding region is highlighted in grey. The non-extendable blocking oligo matches the seal 

sequence and overlaps with the 5’ end of the forward PCR primer, but only has limited homology with the 

fish sequences. Due to selective interference of PCR primer binding to seal DNA, fish amplicons are 

preferentially amplified. 

 

 

 

Table A-4 Alignment of three fish amplicon sequences showing forward and reverse primer sites. Identity 

with the capelin sequence is shown as a dot. Forward PCR primer binding region is highlighted in grey. 

Degenerate bases in the primers were retained even when not needed to match the current targets since we 

were evaluating these primers to be used in field-based studies targeting a wider range of target fish species. 

 

 

  

Chord_16S_F   CGAGAAGACCCTRTGGAGCT  
Chord_16S_R_short  CCTNGGTCGCCCCAAC 
HS_Blocking   ATGGAGCTTTAATTAACTAACTCAACAGAGCA-C3 

                                    10        20        30        40        50        60        70    
                           ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Seal 16S gi|115345039|     CGAGAAGACCCTATGGAGCTTTAATTAACTAACTCAACAGAGCAAATCCAGTCAACCAACAGGGAATAAA  
Seal_Blocking_Primer                   ................................-C3                            
Forward_Chord_16S_F        ............R.......                                                    
Capelin_16S gi|283105166|  .......................GAC.CTAG..AGCC..CGTT...ATTGTC.TT.AGCGG.C..TA..C  
Herring_16S gi|126544494|  .......................GACGC.C.C.AATCAC..AA.GCAGGTC..GCT....G.ACCCCC..  
Mackerel_16S gi|69260952|  .......................GAC.CTG.G.CAT.TCA..TT..A.ACCC.C.AAC.AG..ACTA..C  

                                   10        20        30        40        50        60        70        80        90       100       110          
                           ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|... 
Capelin_16S gi|283105166|  CGAGAAGACCCTATGGAGCTTTAGACACTAGACAGCC-CACGTTAAAATTGTCCTTCAGCGGGCGA-TAAAC--ATTGTGACTCCTGTCTCTCCTGTCTTCGGTTGGGGCGACCGCGG  
Herring_16S gi|126544494|  ..........................G.CCAC..AT.A.GAAAAGC.GG.C..GC...A...A.CCCC....--.AC....-.A...G.A.AAAC.......................  
Mackerel_16S gi|69260952|  .............................GAG.CATAT.--AAGTT..ACAC..CCA.A.AA.G..C.....TT....AA.-..A.TGGC.GTA....................AT..  
Forward_Chord_16S_F        ............R.......  
Reverse_Chord_16S_R_Short                                                                                                        ............NA..  
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Figure A-1 Run I – 90 bp. Plots depicting the interacting effects of three different primer tags (A,B,C) and 

eight different quality filter cut-off values on proportions of fish sequences detected in 39 scats. Sequence 

proportions displayed for both forward and reverse read directions. Error bars represent standard error. 
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Figure A-2 Run II. Plots depicting the interacting effects of three different primer tags (A,B,C) and eight 

different quality filter cut-off values on proportions of fish sequences detected in 8 scats. The same 8 scats 

were amplified with each of the primer tags allowing direct comparison of tags. Sequence proportions 

displayed for both forward and reverse read directions. Error bars represent standard error. 
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Figure A-3 Sequence quality scores vary between species and between forward and reverse reads. Box plots 

show summary of mean quality scores (median, range and upper/lower quartiles). Line plots show variation 

in mean quality at specific positions along the sequence for each of target species. In (a) and (b) data are from 

Run I – 90 bp; in (c) and (d) show data from Run II (note species-specific quality scores differ between runs, 

possibly due to differences in sequence chemistry).  

Run I - 90 bp 

Run II  
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Figure A-4 Mean sequence count for each fish species for various levels of quality filtering and various 

datasets (Run I – 100 bp; Run I – 90 bp; Run II). Means sequence counts calculated for forward reads and 

reverse reads are shown separately. 
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Appendix B  Supplementary tables and figures for Chapter 5 

 

Table B-1 Alignment of 16S fragment for salmonids in the custom reference database, showing only the polymorphic sites at their relative sequence positions. 

 

 

# Species Accession number 30 43 46 47 50 54 55 57 123 124 143 153 154 155 160 163 168 169 173 181 190 201 212 213 214

1. pink salmon NC_010959.1 C − A T C G A T T A A T C C G G C T G C A A A − G

2. pink salmon AB898738.1 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ G ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

3. chum salmon AP010773.1 ∙ C ∙ − ∙ ∙ ∙ C ∙ ∙ G C ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ T ∙ ∙ ∙ A

4. chum salmon HQ592245.1 ∙ C ∙ A ∙ ∙ ∙ C ∙ ∙ G C ∙ ∙ ∙ A ∙ C ∙ ∙ ∙ ∙ ∙ ∙ A

5. sockeye salmon NC_008615.1 A C ∙ − ∙ ∙ ∙ ∙ ∙ T G C ∙ ∙ ∙ A ∙ C ∙ ∙ ∙ ∙ ∙ ∙ A

6. Chinook salmon  HQ167671.1 A C ∙ C ∙ ∙ ∙ ∙ ∙ T G C ∙ ∙ ∙ A ∙ C ∙ ∙ ∙ ∙ ∙ ∙ A

7. coho salmon  EF126369.1 A C ∙ C ∙ ∙ G ∙ ∙ T G C ∙ T ∙ A ∙ ∙ A ∙ ∙ ∙ ∙ ∙ A

8. steelhead GU018123.1 A C ∙ C ∙ ∙ G ∙ ∙ T G C ∙ T ∙ A ∙ ∙ A ∙ ∙ ∙ ∙ ∙ A

9. steelhead AB898746.1 A C G C ∙ ∙ ∙ ∙ ∙ T G C ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ T G ∙ A

10. cutthroat trout  KJ010735.1 A C G C ∙ ∙ ∙ ∙ ∙ T G C ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ A

11. Dolly varden NC_000861.1 A C G ∙ A A ∙ ∙ ∙ ∙ G C ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ T ∙ G ∙ A

12. Atlantic salmon  NC_001960.1 A C G ∙ ∙ ∙ ∙ ∙ C ∙ G − − − A A T C A T T ∙ ∙ T C
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Figure B-1 Frequency of salmon vertebrae between <2 mm and >7 mm demonstrating the size difference 

between adult and juvenile salmon bones (see methods for vertebrae selection criteria). Adult and juvenile 

salmon structures in seal scats can be visually differentiated in most cases by taxonomic experts. 
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Figure B-2 . Percentages of salmon (sockeye, pink, coho, chum and Chinook) by life stage (juvenile or adult) 

in the diets of harbour seals using the Comox estuary haulout in 2012 and 2013. Diets were determined by 

month, and the sample sizes indicate the numbers of scats collected each month. Juvenile salmon bones are 

shown to dominate in the spring (Apr-Jul) and adult salmon bones in the fall (Aug - Nov), supporting the 

fixed season ratio used in our decision tree classification of salmon life stages. 
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Figure B-3 Comox 2012 – monthly average percentages of salmon species (sockeye, pink, coho, chum and 

Chinook) in harbour seal diet by life stage (Juv. or Ad.). 
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Figure B-4 Comox 2013 – monthly average percentages of salmon species (sockeye, pink, coho, chum and 

Chinook) in harbour seal diet by life stage (Juv. or Ad.). 
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Figure B-5 Fraser – summary figure for salmon in harbour seal diet, comparing DNA diet % to Hardparts 

Split Sample Frequency of Occurrence (SSFO) %.  
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Figure B-6 Fraser 2012 – monthly average percentages of salmon species (sockeye, pink, coho, chum and 

Chinook) in harbour seal diet by life stage (Juv. or Ad.). 
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Figure B-7 Fraser 2013 – monthly average percentages of salmon species (sockeye, pink, coho, chum and 

Chinook) in harbour seal diet by life stage (Juv. or Ad.). 
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Figure B-8 Cowichan Bay– summary figure for salmon in harbour seal diet, comparing DNA diet % to 

Hardparts Split Sample Frequency of Occurrence (SSFO) %. 
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Figure B-9 Cowichan Bay 2012 – monthly average percentages of salmon species (sockeye, pink, coho, chum 

and Chinook) in harbour seal diet by life stage (Juv. or Ad.). 
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Figure B-10 Cowichan Bay 2013 – monthly average percentages of salmon species (sockeye, pink, coho, chum 

and Chinook) in harbour seal diet by life stage (Juv. or Ad.). 
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Figure B-11 Belle Chain – summary figure for salmon in harbour seal diet, comparing DNA diet % to 

Hardparts Split Sample Frequency of Occurrence (SSFO) %. 
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Figure B-12 Belle Chain 2012 – monthly average percentages of salmon species (sockeye, pink, coho, chum 

and Chinook) in harbour seal diet by life stage (Juv. or Ad.). 

  



147 

 

 
Figure B-13 Belle Chain 2012 – monthly average percentages of salmon species (sockeye, pink, coho, chum 

and Chinook) in harbour seal diet by life stage (Juv. or Ad.). 

 


