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Bayesian Melding (BM) and downscaling are two Bayesian approaches
commonly used to combine data from different sources for statistical infer-
ence. We extend these two approaches to combine accurate but sparse direct
observations with another set of high-resolution but biased calculated obser-
vations. We use our methods to estimate the path of a moving or evolving
object and apply them in a case study of tracking northern fur seals. To make
the BM approach computationally feasible for high-dimensional (big) data,
we exploit the properties of the processes along with approximations to the
likelihood to break the high-dimensional problem into a series of lower di-
mensional problems. To implement the alternative, downscaling approach,
we use R-INLA to connect the two sources of observations via a linear mixed
effect model. We compare the predictions of the two approaches by cross-
validation as well as simulations. Our results show that both approaches yield
similar results—both provide accurate, high resolution estimates of the at-sea
locations of the northern fur seals, as well as Bayesian credible intervals to
characterize the uncertainty about the estimated movement paths.

1. Introduction. Recent technological advances have made it feasible to track
many things, such as the foraging trips of endangered animals [Wilson et al.
(2007)], the movements of basketball players Miller et al. (2014) and the spread
of infectious diseases [Ginsberg et al. (2009), Lazer et al. (2014a)]. Foraging trips,
for example, reflect the feeding areas of animals, and can be used to identify crit-
ical habitat. Similarly, the movements of basketball players can be summarized
to identify playing strategies, and set up offensive and defensive plays [Liu et al.
(2016a)]. Tracking of disease is essential for controlling epidemics and predicting
future outbreaks. Tracking such things helps to understand the processes that de-
termine movement patterns, and provides a means to forecast and plan for future
changes.

Data collection technologies used for tracking involve both observations from
both direct and indirect sources. Direct observations are usually accurate but sparse
in space and time, such as GPS observations of an animal’s location in animal
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tracking or the number of infected patients from epidemic reports. In contrast, in-
direct sources are usually inaccurate but data rich, and can help to fill in the gaps
in the direct observations, such as inferred locations between GPS observations
(i.e., Dead-Reckoned paths) or the search fraction of flu related queries on Google
[Ginsberg et al. (2009)]. Combining different systems of observations can ulti-
mately result in more accurate and higher resolution tracks for objects of interest.

The problem of combining disparate data sets is not new to statisticians. In
environmental statistics, for example, various approaches have been developed to
combine measurements with numerical (computer) model outputs. Two of the most
common approaches are Bayesian Melding (BM) [Fuentes and Raftery (2005)] and
downscaling [Berrocal, Gelfand and Holland (2010), Zidek, Le and Liu (2012)].
Bayesian Melding was developed to combine direct observations of air-pollutant
concentrations from a sparse network of monitoring stations with outputs by grid
cell from a deterministic chemical transportation (computer) model in a geograph-
ical domain based on known pollutant source and geophysical information. In this
approach, the direct observations and the computer model outputs are connected
via a hidden process of the “true” air pollution level, that is, the monitoring sta-
tions’ observations Z0(s) at location s measure the true air pollutant level Z(s)

with some measurement error

Z0(s) = Z(s) + e(s),

where e(s)
i.i.d.∼ N(0, σ 2

e ) is a white noise process independent of Z(s). The com-
puter model outputs Z1(t) are assumed to be

Z1(s) = a(s) + b(s)Z(s) + δ(s),

where a(s) is the systematic additive error, b(s) is the multiplicative error and δ(s)

is the additional noise. Usually, the multiplicative error b(s) is assumed to be a
constant, and the additive error a(s) is modeled with a polynomial or a Gaussian
process with exponential covariance function [Foley and Fuentes (2008), Fuentes
and Raftery (2005), Sahu, Gelfand and Holland (2010)]. The BM approach has
been adapted for other uses, such as to model hurricane surface winds [Foley
and Fuentes (2008)], ozone levels [Liu, Le and Zidek (2011)] and wet deposition
[Sahu, Gelfand and Holland (2010)], etc. These applications have demonstrated
the remarkable flexibility and effectiveness of the BM approach.

Despite its flexibility, the BM approach is computationally cumbersome when
dealing with “change-of-support” problems [Berrocal, Gelfand and Holland
(2010), Zidek, Le and Liu (2012)]—namely, where the observations are collected
on different spatial scales, such as in situ station measurements versus area aver-
ages. In response, Berrocal, Gelfand and Holland (2010) developed a spatial or
spatial-temporal downscaling approach to combine the air pollutant data using a
linear mixed effect model. This downscaling approach can be described, using the
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same notation as above, by the following regression model with spatially corre-
lated coefficients:

Z0(s) = β0 + r1(s) + (
β1 + r2(s)

)
Z1(s) + ε(s),

where r1(s) and r2(s) are some spatial-temporal random processes, such as the
Matérn process. Recently, Rundel et al. (2015) further developed the downscal-
ing approach to combine speciated PM2.5 (particulate matter with a diameter of
2.5 micro-meters or less) levels from multiple monitoring networks and computer
model outputs.

In this paper, we adapt both the BM and downscaling approaches to combine
multiple sources of observations for tracking objects. We use both approaches to
combine the GPS locations and Dead-Reckoned paths of marine mammals and ap-
ply them to data from northern fur seals—a species that inhabits the North Pacific
Ocean [Battaile et al. (2015)]. Unlike combining the observation from monitor-
ing networks and computer model outputs, we are less concerned with the spatial
“change-of-support” problem in tracking, as the observations and model outputs
in our application lie on the same time scale.

In the BM framework, we first choose a random process that reflects the nature
of the tracked object or the physics of its evolution as the prior for Z(t). For exam-
ple, we consider Z(t) as a Brownian Bridge process in our application to northern
fur seal tracking, which corresponds to the fact that they return to their breeding
beaches to feed their young after a foraging trip. To track an infectious disease, we
could model Z(t) with the susceptible–exposed–infected–recovered (SEIR) com-
partmental equation [Dukic, Lopes and Polson (2012)]. All the systems of observa-
tions are linked to different transformations of Z(t): the direct observation Z0(t) is
Z(t) plus a white noise term, while the indirect observation Z1(t),Z2(t), . . . , are
functions of Z(t) plus some other random processes as biases that reflect model
error. Our BM framework can be summarized as follows:

Z(t) ∼ A certain random process,

Z0(t) = Z(t) + ε0(t),

Z1(t) = g1
(
Z(t)

) + ξ1(t),(1.1)

Z2(t) = g2
(
Z(t)

) + ξ2(t),

· · · · · · ,

where ε0(t) is a white noise process, gj (·), j = 1,2, . . . is a function of Z(t) and
ξj (t) is another random process. To make inference about Z(t), we need to cal-
culate the posterior distribution of Z(t)|Z0(t),Z1(t),Z2(t), . . . , whose posterior
mean can be the smoothed/predicted “track” of the tracking object and the poste-
rior credible intervals (CI) reflect the uncertainty in the track. Note that the random
process in (1.1), such as the Brownian Bridge or the SEIR process, only reflects
our prior knowledge of the track. Its posterior is updated via the observations.
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The downscaling approach for tracking bypasses the modeling of Z(t) and
builds the mixed effects model between the direct observations and the other sys-
tems of observation as

Z0(t) = β0 + r0(t) + (
β1 + r1(t)

)
Z1(t) + (

β2 + r2(t)
)
Z2(t) + · · · + ε(t),

where rj (t), j = 0,1,2, . . . can be some Gaussian processes as in Berrocal,
Gelfand and Holland (2010) and Zidek, Le and Liu (2012). As with the BM ap-
proach, the posterior mean and CI of the linear predictor can be the predicted
“track” and its uncertainty.

For the tracking application, we need to first choose appropriate processes for
the random components, such as Z(t), ξj (t), etc. Besides matching the physics of
the tracked objects, we also need to take account of the computational burden. For
example, devices attached to a northern fur seal (which samples at 16 Hz) and the
video tracking of NBA players (which samples at 25 Hz) [Liu et al. (2016a)] both
yield incredibly big data sets. As a result, we avoid using MCMC techniques that
have been used in the past for both the BM and downscaling approaches. Instead,
we fit the downscaling model with the integrated nested Laplace approximation
(INLA) method developed in Lindgren, Rue and Lindström (2011) and Rue, Mar-
tino and Chopin (2009). Inspired by the sparse matrix techniques, likelihood ap-
proximations, and gradient based numeric integrations in the INLA approach, we
exploit the properties of the processes and designed approximations to the likeli-
hood for the BM approach.

The following describes the BM and downscaling approaches for tracking, and
applies them to a case study of northern fur seals. We provide the background of
this application in Section 2 with specific explanations of the two sources of obser-
vations. Section 3 describes our Bayesian Melding approach, while Section 4 de-
scribes the downscaling approach. We perform several simulation studies to eval-
uate our BM and downscaling approaches, which are reported in Section 5. Sec-
tion 6 contains the case study results together with cross-validation comparisons.
The conclusion and discussion are contained in Section 7.

2. Background and data. Marine biologists have been attaching a variety
of different electronic tags to marine animals to track their movements, describe
their behaviors and characterize their habitat preferences [e.g., Benoit-Bird et al.
(2013a)]. Interactions of tracked animals with other animals or the environment
allow for ecological questions regarding population structure and dynamics to be
addressed [Benoit-Bird et al. (2013b), Block et al. (2011)]. Free-ranging animals
can serve as sensors to collect environmental (e.g., oceanographic) data, which is
difficult or expensive to obtain via conventional means such as ships or satellites
[Boehme, Kovacs and Lydersen (2010), Boehme et al. (2008), Nordstrom et al.
(2013)]. These environmental data can help to better understand ecosystems and
the impact of climate change.
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Accurately determining the locations of animals is a fundamental problem in
animal tracking. One means of obtaining locations is to have tags carried by an-
imals communicate with satellite systems such as the Global Positioning System
(GPS) or the ARGOS satellites. Unfortunately, GPS tags have a limited sampling
frequency due to a limited battery life, and often have limited exposure to satellites
due to animal behavior and habitat. This is particularly true for marine mammals
that dive frequently and are only on the surface for a relatively small proportion
of time. Thus, satellite systems can only provide a sparse and irregularly spaced
record of animal locations.

Many statistical methods have been developed to interpolate the GPS and
ARGOS observations, and to filter outliers (especially in the ARGOS data).
McClintock et al. (2014) provide an extensive review of this literature. Most of
the approaches developed are state-space-based models either in continuous or
discrete time and space, such as the continuous time correlated random walk
(CRAWL) [Johnson et al. (2008)] or robust state-space models [Jonsen, Flemming
and Myers (2005)]. Recently, Fleming et al. (2016) proposed Kriging to interpolate
the satellite observations and compared the performance of several Gaussian pro-
cesses with different covariance structures. However, these methods cannot deal
with the Dead-Reckoned (DR) path as additional observations.

One means of collecting data on the animal’s movements between observations
from a GPS tag is to concurrently deploy a “Dead-Reckoning” (DR) tag consist-
ing of an accelerometer, a magnetometer, a time-depth-recorder (TDR) and other
supporting components [Nordstrom et al. (2013), Wilson et al. (2007)]. Such DR
tags can sample at infra-second frequencies (e.g., 16 Hz) and provide a detailed
record of an animal’s movements. Data downloaded from the tag can be processed
by a Dead-Reckoning algorithm (DRA) to reconstruct the Dead-Reckoned (DR)
path of the animal [Johnson and Tyack (2003), Wilson and Wilson (1988), Wilson
et al. (2007)].

The detailed implementation of a DRA may vary in different applications
[Elkaim et al. (2006), Wilson and Wilson (1988), Wilson et al. (2007)], but the
basic idea is as follows. First, the animal’s orientation (direction of velocity) is
estimated from the smoothed accelerometer and magnetometer readings via an ap-
proximate solution to Wahba’s problem [Wahba (1965)]. Next, the animal’s speed
can be estimated by data from other sensors, such as a TDR or speed sensor [Mitani
et al. (2003)]; or derived from acceleration data; or assumed to be a constant value.
Speed is in turn combined with the orientation and a known starting point to create
the DR path. A more detailed description of the DRA can be found in the supple-
mentary material [Liu et al. (2016b)].

The DR path provides remarkably detailed information about an animal’s move-
ments, especially fine-scale fluctuations that the GPS cannot capture. However, the
DR path can be biased because of poor measurements of swim speeds, system-
atic as well as random error in the accelerometer and magnetometer sensors, un-
documented animal movements caused by ocean currents, confounding between
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movement and gravitational acceleration, and discretization in the integration of
the speed. All of these factors lead to biases and errors in the DR path [Liu et al.
(2015), Wilson et al. (2007)], which can be significant if not corrected using the
relatively accurate GPS observations (by as much as 100 km at the end of a seven-
day trip in the case study we explored below).

The conventional approach to correct for DR path bias has been to add a lin-
ear bias correction term to the DR path, which directly shifts the DR path to
the locations indicated by the GPS observations [Wilson et al. (2007)]. This ap-
proach can be summarized as follows: denote the DR path (in one dimension) by
x1, x2, . . . , xT at times t = 1,2, . . . , T and the GPS observations at times 1 and T

by y1, yT , respectively; assume, without loss of generality, that x1 = y1 = 0 and
that the corrected path η̂t is calculated as

η̂t = xt + yT − xT

T − 1
(t − 1),(2.1)

which evenly distributes the bias yT − xT over the individual time points. The DR
path between two GPS observations is shifted directly to the locations indicated by
the GPS observations, namely, η̂1 = y1 and η̂T = yT . This procedure is repeated
for all the sections separated by the GPS observations to correct the whole path.

Unfortunately, this conventional method to correct for the DR path bias is sim-
plistic, and fails to consider the measurement error in the GPS observations. This
conventional method also fails to provide a statement about the uncertainty in the
corrected path. As a result, the biologging community has concerns about the va-
lidity of the corrected path [Battaile et al. (2015), Wilson et al. (2007)] and has
generally been reluctant to assign too much significance to reconstructed loca-
tions. It is these concerns that prompted us to develop the Bayesian Melding and
downscaling approaches as competing statistically rigorous methods for track re-
construction that overcomes the limitations of the conventional approach. We thus
sought to correct the biased DR paths and quantify the uncertainty in the corrected
paths.

The application in this paper involves tracking data from two lactating northern
fur seals captured and tagged on Bogoslof Island (Alaska, USA) as part of the
Bering Sea Integrated Research Program (BSIERP) [Benoit-Bird et al. (2013a),
Nordstrom et al. (2013)]. Two tags were glued to the fur of each seal with five
minute epoxy: a DR “Daily Diary” tag and a TDR MK 10–F with Fastloc®GPS
technology (both manufactured by Wildlife Computers). The accelerometers and
magnetometers of the DR tag were set to sample 16 times per second (16 Hz),
while the TDR pressure sensor sampled at 1 Hz. The GPS sensor was programmed
to make one attempt every 15 minutes to connect with the satellite.

We produced the DR path for two foraging trips made by the two female seals
(denoted as “Trip 1” and “Trip 2”) using the “TrackReconstruction” R package on
the 16 Hz data set. This R package was developed based on Wilson and Wilson
(1988), Wilson et al. (2007) and described in detail by Battaile (2014). We later
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TABLE 1
The sample quantiles in minutes of the time gaps between two consecutive GPS observations in our

data

Min 10% 25% 50% 75% 90% Max

Trip 1 14.75 15.00 15.45 18.40 31.68 82.79 953.65
Trip 2 14.75 15.00 15.05 30.00 113.05 130.77 698.47

subsampled the DR path to various frequencies to fit the computational capacity
of methods used to get the results. We also projected the GPS observations as
longitude and latitude to Easting and Northing in kilometers (km) in a point-wise
fashion as per Wilson et al. (2007).

The two foraging trips made by the fur seals in our study were each about 1 week
in duration. Trip 1 was 7 days and had 274 valid GPS observations, while Trip 2
lasted about 7.5 days and had 130 GPS observations. A large proportion of the
GPS locations had time gaps around 15 minutes (Table 1)—the designed time gap
for the GPS device to record the locations. However, non-negligible proportions of
them (13% in Trip 1 and 30% in Trip 2) were greater than 1 hour, and the longest
time gap in both trips was longer than 10 hours. Thus, the GPS observations were
irregularly spaced in time and space, and the duration of the gaps between them
were quite large, making it necessary to incorporate the high resolution DR path.
More detailed exploratory analysis of these data sets can be found in Liu et al.
(2015).

3. Bayesian melding. In this section, we introduce the BM approach to com-
bine the information from the accurate but sparse GPS observations with the biased
but dense DR path. For simplicity, the two dimensions of the path (latitude and lon-
gitude) are dealt with separately. Abstractly, our theory is about a one-dimensional
path over time, which we denote by η(t) at discrete time points t = 1,2, . . . , T .
The time unit plays no essential role in our theory. The approach works just as
well with unequally spaced time points, that is, for arbitrary t1, t2, . . . , tT . But for
expository simplicity we work with 1 : T because the DR paths are equally spaced.
As in the previous BM literature, we put a Gaussian process prior on η(t),

η(1 : T ) ∼ N
(
f(1 : T ),R(1 : T ,1 : T )

)
,(3.1)

where the f(·) denotes the process mean function and R its covariance matrix. The
notation f(1 : T ) stands for the vector (f (1), f (2), . . . , f (T ))T , while R(1 : T ,1 :
T ) is a T × T covariance matrix with R(t, t ′) = Cov(η(t), η(t ′)). Throughout this
paper, bold-faced characters are used exclusively to represent vectors or matrices.

Various options are available for this Gaussian process. A common one [Fuentes
and Raftery (2005), Sacks et al. (1989)] assumes that f is a simple parametric
model, for example, a constant or a linear function of the covariates, and R(t, t ′) =
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FIG. 1. The (negative) longitude of the GPS observations of the foraging trips made by two north-
ern fur seals in our case study. Both trips started and ended at Bogoslof Island (Alaska) where the
females gave birth and nursed their pups, and the horizontal line indicates the longitude −168.035E
of the island. The time unit is the proportion of the total time of this foraging trip. Notice the “bridge”
structure of these trips (i.e., differences are small at the beginning and end, but very large in the mid-
dle). This “bridge” structure is described by the Brownian Bridge process.

σ 2ρ(|t − t ′|), where ρ(·) is an isotropic correlation function from a class such
as the Matérn or power exponential. However, this popular stationary Gaussian
process is not suitable for our application. As noted above, the tracked animal
must return to the location from where it started its foraging trip (to reunite with
her pup), which means that the start and end points of the track are fixed, as shown
in Figure 1. Apart from the start and end points, the animal’s path is unknown,
and hence random in our Bayesian framework. Its variation is relatively large in
the middle and small when close to the known start and end points. These features
of the path led us to model it with a Brownian Bridge process, whose mean and
covariance functions are as follows:

f (t) =A + (B − A)
t − 1

T − 1
,

R(s, t) =σ 2
H

(min(s, t) − 1)(T − max(s, t))

(T − 1)
,

where η(1) = A and η(T ) = B are the known start and end points of the path,
while σ 2

H is the variance parameter. Notice that R(1, ·) = R(·, T ) = 0, in accor-
dance with the known start and end points η(1) and η(T ). Also, R(t, t) increases
with t when t < (T − 1)/2 and decreases with t for t > (T − 1)/2, reflecting
the fact that the variation of the path is large in the middle. Another noteworthy
property of our covariance matrix R is its form as the product of a scalar σ 2 and
a matrix, the latter depending only on the time points. To clearly represent the
parameters of the Brownian Bridge process, we introduce the notation

BB
(
A,B,TS, TE,σ 2)

(3.2)

for a Brownian Bridge process, which starts from A at time TS and ends in B at
time TE with a variance parameter σ 2, namely, f (t) = A+ (B −A)(t −TS)/(TE −
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TS) and covariance function R(s, t) = σ 2
H(min(s, t)−TS)(TE −max(s, t))/((TE −

TS)).
Our choice of the Brownian Bridge prior is popular in the literature of biol-

ogy and ecology. According to Humphries et al. (2010), marine mammals tend to
exhibit Brownian-like movements in environments with abundant food resources,
such as the resource-filled ocean around Bogoslof island where our case study
was centered [Benoit-Bird et al. (2013b)]. Also, a Brownian Bridge model was
proposed by Horne et al. (2007) to model the habitat usage of a wide range of
animal species. This model was further improved by Kranstauber, Safi and Bar-
tumeus (2014), Kranstauber et al. (2012) and Sawyer et al. (2009). Pozdnyakov
et al. (2014) studied different ways of estimating the parameters of the Brownian
Bridge model. Many other examples where an animal’s path has been modeled
with Brownian Bridge processes can be found in the references of the above pa-
pers.

It should be recognized that the Brownian Bridge prior does not mean that the
animal’s path after being updated with the GPS observations and the DR path is
still a Brownian Bridge. We use the Brownian Bridge prior to motivate a proper co-
variance structure, whereby the beginning and end of the animal’s path are known
but there is more uncertainty about the middle part of this path. The Markovian
structure of the Brownian Bridge also helps to simplify the Bayesian computation
of combining this process with the DR path, as discussed later.

The GPS observations of the locations are denoted by Y(tk), k = 1,2, . . . ,K ,
t1 = 1, tK = T , tk ∈ {2, . . . , T − 1}, k = 2, . . . ,K − 2, which are unbiased obser-
vations of the true location:

Y(tk)|η(tk)
i.i.d.∼ N

(
η(tk), σ

2
G

)
,(3.3)

for k = 2, . . . ,K − 2. The known start and end points assumption implies that
Y(t1) = η(t1) and Y(tK) = η(tK) are known.

Next, X(t), t = 1,2, . . . , T is used to denote the DR path without any error
correction. To incorporate the bias of the DR path, we assume

X(t) = η(t) + h(t) + ξ(t),(3.4)

where h(t) is a parametric function designed to capture the systematic bias trend
in the DR path. ξ(t) denotes another Gaussian process independent of η(t) that
captures any irregular components in the deviation of the DR path from the truth:

ξ(1 : T ) ∼ N
(
0,C(1 : T ,1 : T )

)
.

For the parametric bias component h(t), we have considered various models, for
example, h(t) = ∑Q

i=1 βit
i−1. The residual bias ξ(t) is assumed to be a Brownian

motion process (random walk of order 1) whose covariance function is therefore

C(s, t) = σ 2
D

(
min(s, t) − 1

)
.
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We believe the Brownian motion process to be a reasonable approximation to the
gradually accumulating error in the DRA. If we assume the errors in the veloc-
ity estimates from the DRA, after removing the systematic bias h(t), at each time
point are an i.i.d. normal sequence, the error in the integrated path is then a Brow-
nian motion.

The final ingredients in our BM model are the prior distributions of the param-
eters. For notational simplicity, all densities are denoted by square brackets [. . .]
throughout this paper. For σ 2

G, we assume a known constant based on the previous
extensive tests of the Fastloc®GPS device [Bryant (2007)]. The priors of the other
two variance parameters are chosen to be [σ 2

H ] ∝ 1/σ 2
H and [σ 2

D] ∝ 1/σ 2
D , which

are uniform priors on the log scale ([log(σ 2
H)] ∝ 1). For β = (β1, β2, . . . , βQ)T ,

a noninformative flat prior [β] ∝ 1 is used. All these parameters are assumed to be
independent of each other.

For expository simplicity in describing the joint distribution of all the data and
parameters, the following notation is introduced:

• The unknown part of the true path is denoted by η = η(2 : (T − 1)), a T − 2
dimensional vector.

• GPS observations of the unknown part of the path are denoted by Y =
(Y (t2), Y (t3), . . . , Y (tk−1))

T , a K − 2 dimensional vector.
• The DR path is X = (X(2 : (T − 1))T ,X(T ) − Y(T ))T , a vector of dimension

T − 1.
• For the two unknown variance parameters, let φ = (σ 2

H ,σ 2
D)T .

The joint likelihood of our model is

[X,Y,η,β,φ] = [φ][β][η|φ][Y|η][X|β,φ,η].(3.5)

To obtain an estimate of the animal’s true path and its uncertainty, we need the
posterior distribution

[β,η|X,Y] =
∫

[β,η|X,Y,φ]︸ ︷︷ ︸
(1)

×[φ|X,Y]︸ ︷︷ ︸
(2)

dφ.(3.6)

Here we also include the β term, which can be used to assess the bias of the DRA.
The posterior mean, denoted by η̃(t), can be an estimate of the animal’s path and
the posterior standard error, denoted by σ̃ (t), provides an uncertainty statement
about the estimated path. The point-wise 95% credible interval for η(t) can be
constructed via a normal approximation,[

η̃(t) − 1.96σ̃ (t), η̃(t) + 1.96σ̃ (t)
]
.(3.7)

In principle, the “exact” credible intervals can be found via the normal mixtures
in our numerical integration scheme, yet we found empirically in our case study
that the exact credible intervals were almost indistinguishable from the normal
approximated intervals in (3.7). This is discussed in detail in the supplementary
material [Liu et al. (2016b)].
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3.1. Model inference. To calculate the posterior (3.6), we first fix the variance
parameters φ and calculate part (1) in equation (3.6) and then integrate over the
posterior of φ. The first part of this section shows how the components of (3.6)
can be efficiently evaluated. We then use numerical integration on an adaptive
grid, same as in INLA [Rue, Martino and Chopin (2009)], to marginalize the ran-
domness in φ. The numerical integration part is described in the supplementary
material [Liu et al. (2016b)].

For notational simplicity, 〈·|·〉 denotes [·|·,φ], that is, 〈η|X,Y〉 = [η|X,Y,φ].
As we specify our model in a Gaussian and linear fashion, it is straightforward to
show that 〈β,η|X,Y〉 is a multivariate Gaussian density,

〈β,η|X,Y〉 ∝ exp
{
−1

2

((
ζ − M−1

1 M2
)T M1

(
ζ − M−1

1 M2
))}

,(3.8)

where ζ = (βT ,ηT )T and M1,M2 are derived in the supplementary material [Liu
et al. (2016b)].

Although the multivariate Gaussian posterior makes inference conceptually
easy in implementation, calculating its posterior mean M−1

1 M2 and covariance ma-
trix M−1

1 actually involves a matrix decomposition with computational complexity
of order O(T 3), which is a tremendous computational burden when T is large. It
is possible to avoid the O(T 3) matrix decomposition with certain sparse matrix
techniques together with the Sherman–Morrison–Woodbury formula [Henderson
and Searle (1981)], but those techniques still require the storage of some huge ma-
trices and complicated matrix calculations. This pushes us to further reduce the
complexity of (3.8).

It is easily seen that we have more information (data) about ηG
	= η(t1:K) where

the GPS observations are available than where they are not. For η(1 : T \ t1:K), we
only have the DR path. So our first step breaks η into two sets, that is,

〈β,η|X,Y〉 = 〈
η(1 : T \ t1:K)|β,ηG,X,Y

〉〈β,ηG,X,Y〉.(3.9)

We can then use the Markovian property of the Brownian Bridge process [see e.g.,
Stirzaker and Grimmett (2001)] to simplify (3.9) as

〈β,η|X,Y,φ〉 =
{

K−1∏
k=1

〈
η(tk + 1 : tk+1 − 1)|η(tk), η(tk+1),β,X,Y

〉}
(3.10)

× 〈β,ηG|X,Y〉.
In this way, we partition the long η series into small pieces separated by the GPS
observations. The next step exploits the Markovian property of the Brownian Mo-
tion and enables us to simplify the kth term in the first part of (3.10) as〈

η(tk + 1 : tk+1 − 1)|η(tk), η(tk+1),β,X,Y
〉

(3.11)
= 〈

η(tk + 1 : tk+1 − 1)|η(tk), η(tk+1),β,X(tk : tk+1)
〉
.
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All the derivations for (3.10) and (3.11) are provided in the supplementary material
[Liu et al. (2016b)]. In (3.11), the posterior of η(t) between two GPS points can
be evaluated only with the corresponding DR path together with the posterior dis-
tribution of the two GPS points and β . This remarkably reduces the memory cost
when computing the posterior of the long sequence and enables us to easily par-
allelize the whole calculation. Moreover, both the Brownian Bridge and Brownian
Motion processes conditioned on two end points are Brownian Bridge processes,
such that

η(tk + 1 : tk+1 − 1)|η(tk), η(tk+1) ∼ BB
(
η(tk), η(tk+1), tk, tk+1, σ

2
H

)
ξ(tk + 1 : tk+1 − 1)|ξ(tk), ξ(tk+1) ∼ BB

(
ξ(tk), ξ(tk+1), tk, tk+1, σ

2
D

)
.

This fact is exploited to completely avoid the matrix inverse calculation when eval-
uating (3.11), which further reduces the computational burden. The derivations are
included in the supplementary material [Liu et al. (2016b)]. Also, we found that the
bias correction in the most simplified BM approach (empirical Bayesian, β = 0) is
a shrinkage of the conventional bias correction, which will account for the signal-
noise ratio in the DR path. A detailed discussion can be found in Liu et al. (2015).

However, the evaluation of 〈β,ηG|X,Y〉 in (3.10) still requires us to deal with
the long sequence X. But Y is an unbiased observation of ηG, and therefore
〈ηG|X,Y〉 can be well approximated by 〈ηG|Y〉. This approximation is excep-
tionally good when σ 2

D > σ 2
G. For β , it can be well inferred from the difference

between XG
	= X(t1:K) and Y. Thus, we introduce the following approximation:

〈β,ηG|X,Y〉 ≈ 〈β,ηG|XG,Y〉.(3.12)

With similar arguments, we can also approximate the posterior of φ by

[φ|X,Y] ≈ [φ|XG,Y].(3.13)

The explicit expressions for (3.12) and (3.13) are included in the supplementary
material [Liu et al. (2016b)]. Our simulations that mimic the real data sets have
shown that the impact of the two approximation errors in (3.12) and (3.13) is neg-
ligible. We also verified through a thinned version of the real data set that the
difference between the posterior obtained from (3.12) and (3.13) is not significant.

In summary, the posterior of η is approximated as follows:

[η,β|X,Y] =
∫

[η,β|X,Y,φ][φ|X,Y]dφ

=
∫ 〈

η(1 : T \ t1:K)|β,ηG,X,Y
〉〈ηG,β|X,Y〉[φ|X,Y]dφ

=
∫ {

K−1∏
k=1

〈
η(tk + 1 : tk+1 − 1)|β, η(tk), η(tk+1),X

〉}

× 〈ηG,β|X,Y〉[φ|X,Y]dφ(3.14)
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=
∫ {

K−1∏
k=1

〈
η(tk + 1 : tk+1 − 1)|β, η(tk), η(tk+1),X(tk : tk+1)

〉}
(3.15)

× 〈ηG,β|X,Y〉[φ|X,Y]dφ

≈
∫ {

K−1∏
k=1

〈
η(tk + 1 : tk+1 − 1)|β, η(tk), η(tk+1),X(tk : tk+1)

〉}

× 〈ηG,β|XG,Y〉[φ|XG,Y]dφ.

The integration in equation (3.14) is calculated based on an adaptive grid
based on [ψ |XG,Y], which is discussed in the supplementary material [Liu et
al. (2016b)]. Combining all these techniques to simplify computation reduces the
computational time of our BM approach to a level similar to that of the DRA.
For the two data sets we worked with, the DRA and BM of the DR path and
GPS took less than five minutes in total on a regular laptop. We implemented the
BM approach in an R package “BayesianAnimalTracker” [Liu (2014)]. The speed
with which calculations can be done using this package [see Table 3 of Liu et al.
(2015)] is a huge benefit for marine biologists who want to follow their animal
while aboard a ship or on a remote island using a portable laptop without access to
the Internet or any high performance computers.

4. Downscaling. Using the same notation as in the previous section, we pro-
pose the following downscaling model for the GPS observations and DR path:

Y(tk) = β0 + γ1(tk) + (
β1 + γ2(tk)

)
X(tk) + ε(tk),(4.1)

where γ1(t) and γ2(t) are zero-mean Gaussian processes, such as the random
walks of order 1 and 2 (RW1, RW2) and autoregressive processes of order 1, 2
and 3 (AR1, AR2, AR3). Here ε(t) is a white noise process. For expository sim-
plicity, let γ denote all the unknown and random components in (4.1), including
β0, β1, γ1(1 : T ), γ2(1 : T ) and the hyperparameters governing them, for example,
the variance/correlation parameters of γ1, γ2, ε. The combined path of the tracked
animal can be learned from the posterior[

Y(t)|X(t),X(t1:K),Y(t1:K)
]

=
∫
γ

[
Y(t),γ |X(t),X(t1:K),Y(t1:K)

]
dγ

=
∫
γ

[
Y(t)|γ ,X(t),X(t1:K),Y(t1:K)

][
γ |X(t1:K),Y(t1:K)

]
dγ ,

for t ∈ (1 : T ) \ t1:K . Traditionally, the above integral has been calculated using
an MCMC approach such as the Gibbs sampler [Berrocal, Gelfand and Holland
(2010), Zidek, Le and Liu (2012)]. However, the MCMC approach is computa-
tionally expensive as well as technically challenging, and it sometimes encoun-
ters mixing or convergence problems. We therefore calculated the above posterior



1530 LIU, ZIDEK, TRITES AND BATTAILE

by the integrated-nested Laplace approximation (INLA) via the R-INLA package
[Martins et al. (2013)]. Basically, the INLA method seeks the posterior mode via
numerical optimization, approximates the integrals of the random effects or hy-
perparameters via Laplace approximation, and numerically integrates over the hy-
perparameters on a selected grid based on the (approximated) likelihood. Readers
may refer to papers by Rue, Martino and Chopin (2009) and Martins et al. (2013)
for more detailed introductions of the INLA method.

For the downscaling approach, we use the default priors in R-INLA, which are
all weakly informative priors. It is noteworthy that we do not put an informative
prior on the variance parameter of ε(t) as we do for the BM approach in equation
(3.3) because ε(t) represents not only the measurement error in Y(t), but also the
lack-of-fit errors of the downscaling model.

So far we have not found any direct equivalence between the BM and downscal-
ing models, but notice that the posterior in both cases is essentially only calculated
based on the DR path at the GPS observations X(t1:K), not on the full set X(1 : T ).
This supports the use of our approximation to the likelihood in (3.12) and (3.13)
from another perspective.

5. Simulation study. We performed several simulation studies to evaluate the
performance of our approaches. These included a simulation to study the approxi-
mation in our BM approach (Section 5.1) and a comparison of all five approaches
under three different data-generating models (Section 5.2).

5.1. Simulation to compare the approximation in the BM approach. We used
a simulation to evaluate the impact of our likelihood approximation in (3.12) and
(3.13). For expository reasons, let “full BM” denote the Bayesian Melding ap-
proach based on the full likelihood [left-hand side of (3.13)], and let “approxi-
mate BM” denote Bayesian Melding approach based on the approximate likeli-
hood [right-hand side of (3.13)].

Here the data were generated according to our BM model: The true curve was
simulated as a Brownian Bridge with T = 2000; the K = 125 GPS time points
were randomly chosen from the T = 2000 time points; the GPS observations were
i.i.d. normal observations of the true curve at these time points; the DR path was
the true curve plus the bias function h(t) and another Brownian Motion process.
The parameters used in the simulation were the maximum likelihood estimates
from our Trip 2 Northing data set. The results shown below are based on 1000
replicates. Similar findings were found from other settings and thus omitted.

The first two panels in Figure 2, include the box-whisker plots of the posterior
mode of log(σ 2

H ) and log(σ 2
D) from the full and approximate BM. As we used a

uniform prior on the log scale, the posterior modes are equivalent to the maximum
likelihood estimates based on either the full or the approximate likelihood. Both
estimates were nearly unbiased in both parameters, but the approximate likelihood
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FIG. 2. Plots from our simulation, from left to right: the box plot of the posterior mode of log(σ 2
H )

obtained from the approximate and full likelihoods; the box plot of the posterior modes of log(σ 2
D);

scatter plot of the RMISE of the posterior mean of η from the approximate Bayesian Melding ap-
proach versus the RMISE of the posterior mean from the full Bayesian Melding approach.

estimates were obviously less efficient than the full likelihood estimates. The ra-
tios between the standard errors of the approximate likelihood estimates and full
likelihood estimates were 1.19 and 1.38 for log(σ 2

H ) and log(σ 2
D), respectively.

The increase in standard error, or, equivalently, the efficiency loss, was relatively
small, as the approximate BM only uses a (125 + 125)/(2000 + 125) = 2/17 frac-
tion of the observations used in the full BM for parameter inference. For example,
if we assume the standard error of the estimates was proportional to 1/

√
n as in

the i.i.d. case, the ratio between the standard errors would be predicted to be about√
17/2 ≈ 2.915, far more than the ratio observed in the simulation study.
Moreover, the estimates of log(σ 2

H ) and log(σ 2
D) are relatively unimportant,

given that these are nuisance parameters in our Bayesian inference. What matters
in the real application is the quality of the reconstructed path. Therefore, we cal-

culated the root mean integrated squared error [RMISE,
√∑T

t=1(η(t) − η̄(t))2/T ]
between the true curve η(t) and different estimates η̄(t). Here η̄(t) can generically
represent the posterior distribution of η(t) from either the full or approximate BM,
or the posterior distribution of Y(t) in the downscaling approach.

The third panel of Figure 2 is the scatter plot of the RMISE among all the repli-
cates in our simulation. Clearly, most of the points lie on the diagonal line, indi-
cating little difference between the reconstructed η(t)’s from approximate BM and
full BM. This is because of the small efficiency loss in our likelihood approxima-
tion and the fact that we marginalize over the variance parameters in the posterior.

5.2. Comparison all five approaches. The above simulation study suggests
that our approximate BM inference procedure is quite accurate. In the following
simulation, we compared all the five candidate methods of estimating the animal’s
path: the two methods working with the GPS observations only (1. Linear interpo-
lation and 2. CRAWL with drift term); and the three methods working with both
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the GPS and DR path (3. Conventional bias correction of the DR path, 4. Our
Bayesian Melding method, and 5. Our downscaling method). Here we only work
with the approximate BM, as the full BM was very time consuming to run. The
detailed model choices for the BM and downscaling were chosen to be the same
as those selected for our real data application in the next section; that is, the BM
model had the h(t) as a constant and the downscaling model had both γ1 and γ2 as
RW1.

The data were generated from three models: the Bayesian Melding model as
mentioned above, the CRAWL model, and the downscaling model. When gener-
ating data from the CRAWL model, a path was first simulated from a CRAWL
model fitted to the real data sets and the DR path was generated by adding a Brow-
nian Motion to this path. In the downscaling model, we fixed the observed DR
path (from the real data), and generated the GPS observations by our downscaling
model. The parameter settings of all the data generation models were the estimates
from our real data from Trip 2. One thousand replicates were generated from each
model.

To summarize the performance in both dimensions, we report the pooled
RMISE from both the northing and easting dimensions, namely,√√√√ T∑

t=1

[(
ηN(t) − η̄N (t)

)2 + (
ηE(t) − η̄E(t)

)2]
/(2 ∗ T ),

where N stands for Northing and E stands for Easting dimensions. The pooled
RMISE serves as a general measure of the goodness of approximation in both Nor-
thing and Easting dimensions. The box-plot of the RMISE in the two dimensions
separately were similar and thus omitted. The box-plots of the pooled RMISE are
in Figure 3. Our BM and downscaling methods have smaller RMISEs than all the
other competitors regardless of which model the real path was generated from;
that is, even if the animal’s path were generated from a CRAWL model (with
an integrated OU process) instead of a Brownian Bridge, the BM approach with

FIG. 3. Pooled RMISE for all five methods of estimating animal’s path, stratified by the data-gen-
erating model.
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a misspecified prior still manages to outperform CRAWL interpolation with the
high frequency DR path. In the comparison of BM and downscaling, their dif-
ferences were very small. These findings were consistent with our findings in the
cross-validation studies of the real data.

Another interesting finding is that the conventional bias correction of the DR
path outperformed CRAWL when the data were generated from the CRAWL
model but not when the data were generated by the downscaling model. This is
because in the CRAWL data generation the error in the DR path is purely additive,
while the error is both additive and multiplicative in the downscaling data gener-
ation. The conventional bias correction is only designed to deal with the additive
error but not the multiplicative one. On the other hand, as the model parameters in
the BM approach are adaptive in accordance with the observations, it still manages
to predict the animal’s path as well as the correctly specified downscaling model.

6. Case study results. We used our proposed BM and downscaling ap-
proaches to combine the DR path and GPS observations for high resolution paths
of northern fur seals. To simplify computation and comparing different models,
we thinned the original 16 Hz DR path (16 observations per second) into one ob-
servation per 5 minutes and added the GPS time points into this thinned time set.
Notice here the thinning was done after the DR path was produced from the orig-
inal 16 Hz data set. The resulting Trip 1 data set had 2100 time points, among
which 274 were GPS time points. The resulting Trip 2 data set had 2334 times
points, among which 130 were GPS time points. It is noteworthy that our BM ap-
proach could easily be fitted to the original “big” data sets based on the 1 Hz DR
path (547,803 time points for Trip 1 and 661,249 for Trip 2). The results were re-
ported in Liu et al. (2015). Individually modeling the two dimensions of the paths
of the two animals yielded four data sets denoted as Trip 1 Northing (latitude),
Trip 1 Easting (longitude), Trip 2 Northing and Trip 2 Easting, respectively.

We considered different bias functions h(t) in our BM approach as well as dif-
ferent random processes γ1, γ2 for the downscaling approach. To compare these
different models as well as the two approaches, we conducted leave-5-out cross-
validation experiments (L5OCV) (removing 5 consecutive GPS observations at
once when fitting our models) to evaluate the predictive ability of our models when
the time gaps between the GPS observations are of relatively large size. Here we
were less concerned with the model’s predictive ability for short gaps, as there
were natural constraints on the speed of our tracked animal. This means that when
the time gaps were small, the animal’s movements were confined in a small range
and the performances of all methods were similar, that is, in leave-one-out cross-
validations [Liu et al. (2015)]. L5OCV in our real data sets created gaps that would
be longer than roughly 90% of the gaps in the observed GPS time points as shown
in Table 1, and thus provided us with a good way to evaluate the long-term pre-
dictive performance. We used the root mean squared error (RMSE) as a measure
for the prediction accuracy and also calculated the actual coverage percentage of
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TABLE 2
RMSEs and actual coverage percentages of 95% credible intervals (in gray background) in L5OCV

comparisons for different bias correction terms h(t) = ∑Q
i=1 βi t

i−1 with Q = 1,2,3,4 in the BM
approach

Q = 1 Q = 2 Q = 3 Q = 4

Trip 1 Northing 0.80 94.9 0.80 95.2 0.80 95.6 0.80 95.6
Trip 1 Easting 0.75 97.8 0.75 98.2 0.76 97.8 0.76 97.8
Trip 2 Northing 3.06 93.0 3.06 93.0 2.73 92.2 2.83 89.1
Trip 2 Easting 2.62 96.9 2.60 96.1 2.52 93.8 2.53 93.8

the nominal 95% posterior credible intervals to examine whether the uncertainty
in the combined path is calibrated properly.

In the rest of this section, we summarize the model selection results of the
BM and downscaling models (Section 6.1 and 6.2, respectively). Then the cross-
validation comparison with BM and downscaling approaches as well as linear in-
terpolation, CRAWL, and conventional bias correction is in Section 6.3. The cor-
rected path and its credible intervals for both methods are included in Section 6.4.

6.1. Model selection for BM. In our BM approach, we used the Brownian
Bridge and Brownian Motion processes with different bias functions h(t) in the
DR path. Among many possible parameterizations of h(t), we investigated only
the polynomials h(t) = ∑Q

i=1 βit
i−1 of order Q = 1 (constant) to Q = 4. The

RMSE and actual coverage are shown in Table 2.
As seen in Table 2, the BM with different h(t) functions had very similar RMSE,

that is, they differed little compared to the difference between the BM approach
and the linear interpolation, etc., as in Table 5. The actual coverages of the credible
intervals were reasonably close to the nominal 95% among the different Q’s. This
indicates that increasing the complexity in h(t) had little impact on the perfor-
mance of our BM approach in our data sets. There was an exception, however, for
the Trip 2 Northing direction where increasing Q to 3, 4 caused the CV-RMSE to
increase, which came at the cost of lowering coverage percentages for the credible
intervals. This observation led us to choose the simple BM approach with Q = 1
for further comparisons.

Perhaps our findings of little difference among the different BM models should
not seem surprising, as we marginalized over the variance parameters σ 2

H ,σ 2
D and

β [parameters in h(t)] when evaluating the posterior [η|X,Y]. That marginaliza-
tion naturally helps to reduce the reliance on a good mean model to correct the
bias in the DR path. Therefore, we chose not to pursue that investigation for more
sophisticated parameterization of h(t).
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TABLE 3
Selected DIC values for the downscaling models. “NA” means that INLA crashed when fitting this
model. The AR1–AR2 model minimizes the DIC for Trip 1 Northing, AR2–RW1 for Trip 1 Easting

and Trip 2 Easting, and RW2–RW1 for Trip 2 Northing. The RW1–RW1 model is included as a
benchmark

RW1–RW1 RW2–RW1 AR1–AR2 AR2–RW1

Trip 1 Northing −1608.41 −51.87 −1641.93 −1542.40
Trip 1 Easting −487.04 −367.29 NA −1683.86
Trip 2 Northing −243.34 −853.31 −729.44 −827.04
Trip 2 Easting −774.80 −91.57 −741.25 −829.27

6.2. Model selection for downscaling. For the downscaling model (4.1), we
considered random walks of order 1 and 2 (RW1, RW2) and autoregressive pro-
cesses of order 1, 2, 3 (AR1, AR2, AR3) for both γ1(t) and γ2(t), leading to 25
models in total. They are denoted in “XXX–YYY” form (i.e., RW1–AR2 denotes
the downscaling model with γ1 as a random walk of order 1 and γ2 as an au-
toregressive process of order 2). Not every model fit our data sets well and INLA
crashed due to numerical issues when fitting certain models. It was not feasible
with our computational resources to perform cross-validation for all of the 25 mod-
els. Instead, we screened these models using the conventional deviance informa-
tion criterion [DIC, Spiegelhalter et al. (2002)], which can also be calculated by
the INLA package. We found that the DIC was minimized by some simple models
for our data sets and have listed the DIC values for them together with the simplest
RW1–RW1 model in Table 3.

None of the models involving AR3 components were selected by the DIC cri-
terion, indicating that the dependence in the two random processes were of short
memory, that is, they only depended on the previous two time points. Also, it is
clear from Table 3 that none of these models dominated in all four data sets. The
RW2–RW1 model achieved the smallest DIC in the two Easting data sets, but it
did not fit well in the Trip 1 Northing. However, the simplest RW1–RW1 model
achieved reasonable fit in all of the four data sets, and thus was included in the
following comparisons.

As pointed out by Spiegelhalter et al. (2014), DIC is not an ideal criterion for the
predictive power of the models, which was our key objective in reconstructing the
animal’s path. We further compared the four downscaling models via a leave-5-out
cross-validation and summarized the results in Table 4. Among the four downscal-
ing models we considered, AR2–RW1 and AR1–AR2 were the first to be ruled
out, as they had large prediction errors in the Trip 2 Northing and Easting data sets.
Close examination of the cross-validation results found they completely failed to
correct the DR path for a certain period of the trip and resulted in errors as large as
100 km. In addition, the credible intervals for AR2–RW1 and AR1–AR2 failed to
achieve the nominal coverage percentage for Trip 1 Northing or Trip 2 Easting. As
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TABLE 4
RMSEs and actual coverage percentages of nominally 95% credible intervals (in gray background)

for the L5OCV comparisons of the different downscaling models with different processes

Downscaling with different γ1, γ2

RW1–RW1 RW2–RW1 AR1–AR2 AR2–RW1

Trip 1 Northing RMSE (km) 0.95 0.83 1.06 2.73
Coverage (%) 95.6 91.5 94.9 86.0

Trip 1 Easting RMSE (km) 0.75 0.93 0.71 0.80
Coverage (%) 98.9 95.2 96.3 96.6

Trip 2 Northing RMSE (km) 2.59 1.61 3.56 5.26
Coverage (%) 93.0 98.4 92.9 91.1

Trip 2 Easting RMSE (km) 2.56 4.08 18.27 18.32
Coverage (%) 98.4 93.8 85.2 96.1

for the comparison between the RW2–RW1 and RW1–RW1 models, RW2–RW1
had slightly smaller RMSEs in the two Easting data sets, while RW1–RW1 had
smaller RMSEs in the two Northing data sets. Yet these two models in general
achieved similar performances in terms of the RMSE and actual coverage percent-
age. We therefore chose the simpler RW1–RW1 model for further comparisons.

6.3. Cross-validation comparison of the different approaches. We compared
the selected BM model with Q = 1 (BM1 for short) and downscaling the RW1–
RW1 model (DS11 for short) with the competitors: linear interpolation, conven-
tional bias correction, and CRAWL [Johnson et al. (2008)]. Linear interpolation
provided the same mean curve as using the Brownian Bridge to interpolate the GPS
observations. CRAWL interpolated the GPS observations via state-space models,
whose process model is an integrated Ornstein–Uhlenbeck process with a drift
term (but assuming the correlation and process noise parameters are the same in
both dimensions). Linear interpolation and CRAWL were based on the GPS obser-
vations only. Conventional bias correction was previously described in (2.1). The
CV–RMSE and coverage percentages of the credible intervals are summarized in
Table 5.

We first compared the two approaches only with the GPS observations (first
two columns of Table 5) to the approaches that combined both the GPS observa-
tions and DR path (the last three columns of Table 5). We found that the latter
approaches had better prediction performance in general, which demonstrates the
great value of the DR path in providing fine-scale details of the animal’s move-
ment. In the comparison of linear interpolation and CRAWL, the more complex
CRAWL had a larger RMSE than linear interpolation in the two Easting data sets
we considered, which indicates a poor fit for the CRAWL models. In addition, the
coverage percentages of CRAWL were lower than the nominal level in the two
data sets from Trip 2.
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TABLE 5
RMSEs and actual coverage percentages of nominally 95% credible intervals (in gray background)
for the L5OCV comparisons of all the approaches. Two approaches that only use GPS data: Linear
interpolation (Linear) and Correlated Random Walk (CRAWL) with drift term. Three approaches
use both GPS and DR path: conventional bias correction of DR (Convention), Bayesian Melding

with Q = 1 (BM1), and Downscaling with RW1–RW1 model (DS11)

Linear CRAWL Convention BM1 DS11

Trip 1 Northing RMSE (km) 1.16 1.12 1.25 0.80 0.95
Coverage (%) 94.1 94.9 95.6

Trip 1 Easting RMSE (km) 1.13 1.28 1.04 0.75 0.75
Coverage (%) 93.8 97.8 98.9

Trip 2 Northing RMSE (km) 4.44 3.70 3.33 3.06 2.59
Coverage (%) 88.3 93.0 93.0

Trip 2 Easting RMSE (km) 3.84 3.98 2.67 2.62 2.56
Coverage (%) 90.6 96.9 98.4

We also noticed that the conventional approach had a larger RMSE than linear
interpolation with the Trip 1 Northing data set, which shows that the conventional
approach failed to properly use the high resolution DR path. The same issue was
not found with our BM and downscaling approaches, both of which achieved a
smaller RMSE than the other three approaches uniformly in all the four data sets
we considered. Also, the reduction in the RMSE achieved by our BM or downscal-
ing approaches was larger than the differences between the BM or downscaling
approaches with different model components as shown in Tables 2 and 4.

In the comparison between the selected BM and downscaling models (last two
columns of Table 5), the BM1 had a smaller RMSE for Trip 1 Northing while
the DS11 had a smaller RMSE for the Trip 2 Northing. They achieved similar
RMSEs in the two Easting data sets. They also had similar coverage percentages
across all four data sets. Thus, we could not see any noteworthy differences in the
performance of the BM and downscaling approaches.

To further explain the results in Table 5, we plotted the corrected path for all five
approaches considered above and zoomed in on the time period 12:00–24:00 for
2009-07-23 in Trip 1 to better illustrate their differences (Figure 4). From this plot,
we see that the conventional corrected path went through the GPS observations di-
rectly as did the linear interpolation, but it inferred dramatic changes between the
GPS observations. The reconstructed path from BM and downscaling aligned well
with the GPS observations while retaining detail from the conventional bias cor-
rection. Liu et al. (2015) show that the BM corrected path shrinks the conventional
bias correction toward that of the linear interpolation. This shrinkage removes the
noise in the DR path in a statistical way and gives the BM an advantage over the
conventional approach. From this plot, we also found that the corrected path from
BM and downscaling were very close.
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FIG. 4. The reconstructed path for a northern fur seal in a selected period from all the five ap-
proaches considered in our study, Bayesian Melding (BM1), Downscaling (DS11), Conventional bias
correction, CRAWL and linear interpolation. The dots are the GPS observations.

However, the path from CRAWL showed some unrealistic trends, like the up-
swing before 19:00, while the DR path indicated that the animal was moving in
the opposite direction. These unrealistic trends likely resulted from the model as-
sumptions in CRAWL, which may not fit the data well. These unrealistic trends
and the resulting poor performance of CRAWL in cross-validations seem to have
derived from the lack of fine detail provided by the DRA.

6.4. Combined path and its uncertainty from BM and downscaling. Figure 4
only covered a small period of our data. We applied our proposed BM and down-
scaling approaches to the four data sets and found they all successfully corrected
the bias of the DR path and properly quantified the uncertainty. We therefore only
present the plots for the corrected path for the Trip 1 Northing data set. Similar
plots and analysis were found in the other three data sets and are thus omitted. In
Figure 5, we show the corrected path from the BM (solid curve) and downscaling
(dotted curve) approaches, which are the posterior mean of η(t) when BM was
used, and Y(t) when the downscaling approach was used. The point-wise 95%
credible intervals (gray solid curve for BM and purple dotted curve for down-
scaling) were included to represent the uncertainty around the corrected path. We
also included the original data—GPS observations (round points) and the DR path
(dashed curve), from which it is clear that the bias of the DRA grew dramatically
over time and reached 100 km at the end of this trip. The location estimate in the
DR path was not very useful in predicting the animal’s location, but the fluctuations
in the DR path matched the fluctuations of the GPS observations, meaning that the
DR path has useful high-frequency information that can be further exploited to
fill in the gaps between GPS observations. This was successfully achieved by our
proposed BM and downscaling approaches, as the corrected path from both ap-
proaches lay close to the GPS observations.
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FIG. 5. The Bayesian Melding and downscaling results for a northern fur seal undertaking Trip 1
Northing from Bogoslof Island, Alaska: Points are the GPS observations and the dotted curve is
the DR path. The solid curve is the posterior mean of η(t) in the case of BM, whose 95% credible
intervals are shown by the gray solid curve. The dotted curve is the posterior mean of Y (t) in the
downscaling approach, whose 95% credible intervals are shown by the gray dotted curve.

For the scale of Figure 5, the corrected path and CIs from BM and downscal-
ing were almost indistinguishable. To show how our approaches worked in a fine
scale, we zoomed into the Day 2 (2009–07–23) and Day 6 (2009–07–27) part of
this trip. We can confirm from Figure 6 that the corrected paths from the two ap-
proaches were similar, as the curves of the posterior means nearly overlaid each
other. As well, the CIs from both approaches displayed a clear “bridge” structure,
that is, they were narrower at the GPS time points and wider in between the GPS
observations. This is plausible, as we have direct and accurate observations at the
GPS time points and less accurate information when the GPS locations were not
available. The error grows as the track moves away from the GPS observations and
decreases near the next GPS observation. Also, the longer the gap between the GPS
time points, the larger the error and thus the wider credible intervals, which is seen
on comparing Days 2 and 6. On Day 6, fewer GPS observations were available and
the gaps were longer, which resulted in overall wider credible intervals.

Another interesting finding seen in Figure 6 is that the CI from the downscaling
approach was narrower than those from BM on Day 2 while they were wider on
Day 6. This was caused by the two RW1 components in the downscaling model, as
their variance was growing with time (Figure 7). On the other hand, the posterior
SD for the BM approach was more stable, as it was more constrained with the
Brownian Bridge structure.

7. Concluding remarks. We present a Bayesian Melding approach and a
downscaling approach to combine sparse but accurate GPS observations with high
resolution but biased DR paths for the tracking of marine mammals. The posterior
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FIG. 6. Zoomed Bayesian Melding and downscaling results for a northern fur seal undertaking
Trip 1 Northing on 2009–07–23 and 2009–07–27: Red points are the GPS observations. The solid
curve is the posterior mean of η(t) in BM, whose 95% credible intervals are shown by the gray solid
curve. The dotted curve is the posterior mean of Y (t) in downscaling, whose 95% credible intervals
are shown by the gray dotted curve.

mean from our BM and downscaling approaches both offer an accurate and high
resolution path for the tracked animals and the posterior credible intervals provide
a reasonable statement of the uncertainty in our inferences. The good predictive
performance of our approaches is also supported by our simulation studies. More-
over, neither of our methods requires computationally expensive MCMC methods
for computation. Our BM approach exploits the conditional independence property
of the Brownian Bridge and Brownian Motion to dramatically reduce the heavy
computational burden involved in dealing with large data sets. The downscaling
approach is fitted via the computationally efficient INLA approach. The quality
of the likelihood approximation in BM and correctness of downscaling were con-
firmed in our simulation study.
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FIG. 7. Posterior standard deviation (SD) from Bayesian Melding and downscaling results for a
northern fur seal undertaking Trip 1 Northing. The solid curve is from BM, while the dotted curve is
from downscaling.

We performed cross-validation studies to compare different models in these two
approaches and found that the prediction performance of the simplest approaches
(i.e., BM with a constant bias term and downscaling with both two random effects
being first order random walks) were as good as or even better than those of the
more complex models, according to our empirical assessments. This finding is
partially explained by the fact that we marginalized over the model parameters in
the posterior distribution for our tracked subjects. In the comparison between BM
and downscaling, we could not find any noteworthy differences between these two
approaches in their prediction accuracy and actual coverage percentage of their
credible intervals. However, our implementation of BM is better because it is more
scalable to big data sets with more than half a million time points on a regular
computer [Liu et al. (2015)], while the downscaling approach fitted by INLA can
only work with thinned data sets on the same computer. Also, we built BM on a
process that reflects the nature of our tracked subject, making it superior for future
development of our theory.

McClintock et al. (2014) have shown many disadvantages of using a discrete
time formulation when working with satellite data, which may lead one to ques-
tion the discrete time formulation we used, yet animal movement (e.g., the fur
seals we tracked) is ultimately powered by its body movement (e.g., the stroking
of flippers), and there is a maximum frequency of body movement that an animal
is capable of achieving. Therefore, the animal’s movement is essentially discrete
and can thus be sufficiently well described by a discrete process model with an
observation frequency of no less than twice the maximum frequency of the ani-
mal’s body movement [Nyquist frequency, see, e.g., Le and Zidek (2006)]. The
Nyquist frequency was taken into consideration in data collection, that is, the orig-
inal sampling frequency of the DR path was 16 Hz in our northern fur seal data.
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The DR path thus captures the fine detail in an animal’s movements and provides
observations of the animal’s path in “continuous time” with respect to the animal.
Our discrete time formulation in Bayesian Melding or downscaling is thus backed
up by these “continuous time” observations, which are free of the shortcomings of
discrete time models for satellite data.

One concern about our Brownian Bridge prior in the Bayesian Melding ap-
proach is that the GPS observations (Figure 1) appear to be much smoother than a
Brownian Bridge process, yet it is important to recognize that the Brownian Bridge
is only a prior distribution for the animal’s path. The corrected path, as seen in Fig-
ure 6, retains the smoothness and does not become wiggly as a simulated Brownian
Bridge because the corrected path is posterior given both the GPS and DR paths.
The smoothness of the DR path is preserved in the posterior. However, our BM
approach can undoubtedly be further improved by replacing the Brownian Bridge
process prior with some other processes that reflect more features of the animal’s
movements, such as a Brownian Bridge process with dynamic variance, the inte-
grated Ornstein–Uhlenback process as in Johnson et al. (2008), or a solution to a
stochastic differential equation that describes the animal’s habitat preference. This
is being addressed in our future work.

The modeling approaches we developed and tested can facilitate the processing
of a high resolution in situ record of the hydrographic data collected by marine
mammals, and can contribute to broadening knowledge about parts of the ocean
that have been hard to observe. They can contribute to studies seeking to address
the effects of climate change on the ocean, and also contribute to answering many
biological and ecological questions about habitat preference and resource selection
[Hooten et al. (2013)].

Our work also demonstrates the value of using the Bayesian data fusion tech-
niques to combine observations from different sources for tracking objects. We are
currently working on adapting the ideas developed in this paper to track basketball
players as well as the progress of infectious disease. For the latter case, we are
using the Google flu trends data as a biased but high resolution source of observa-
tions and Center for Disease Control (CDC) reports as an accurate but sparse set
of observations. The bias and failure to predict some disease epidemics by Google
flu have been studied in Lazer et al. (2014a, 2014b) and the references within. The
media also used it as a serious warning about the use of “big data,” as noted by
Salzberg (2014) who commented: “Big data can be great, but not when it is bad
data.” While agreeing with this comment in principle, we would point out that “bad
big data,” such as the Google flu trend or the DR path in our paper, can be good
again in cases when it can be combined and corrected by good data. So, for exam-
ple, Dugas et al. (2013) and Lazer et al. (2014a) used various regression models
to combine the Google flu and CDC reports and achieved better predictions for in-
fectious disease. Our BM and downscaling approaches also successfully combine
the DR path with GPS observations.
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SUPPLEMENTARY MATERIAL

Supplement to “Bayesian data fusion approaches to predicting spatial
tracks: Application to marine mammals” (DOI: 10.1214/16-AOAS945SUPP;
.pdf). Supplement A: Details of the dead-reckoning algorithm. We provide addi-
tional details of the Dead-Reckoning Algorithm to help understand how it works
and why it is biased.
Supplement B: Details of Bayesian melding. This supplement includes the detailed
derivations of the inferential methods needed for our Bayesian Melding approach.
It includes the following subsections:

1. Explicit form of 〈β,η|X,Y〉.
2. Derivation of (3.10) and (3.11).
3. Explicit expression for (3.11).
4. Explicit expression of [φ,β,ηG|XG,Y].
5. Marginal distribution of η at the non-GPS points.
6. Integration over the variance parameters φ.
7. The goodness of normal approximation credible intervals.

Supplement C: Figures in color. The colored version of Figures 1, 4, 5 and 6.
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