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Abstract

With recent advances in electrical engineering, devices attached to free–ranging marine
mammals today can collect oceanographic data in remarkably high spatial–temporal res-
olution. However, those data cannot be fully utilized without a matching high–resolution,
accurate path for the animal, something that is currently missing in this field. In this
paper, we develop a Bayesian Melding approach based on a Brownian Bridge process
to combine the fine-resolution but seriously biased Dead–Reckoned path and the precise
but sparse GPS measurements; the result is an accurate and high–resolution estimated
path together with credible bands as quantified uncertainty statements. We also exploit
the properties of underlying processes and some approximations to the likelihood to dra-
matically reduce the computational burden of handling those big high–resolution data
sets.

1 Introduction

The idea of using free–ranging marine animals as platforms to collect oceanographic data,
such as temperature and salinity, can be traced back to the discussion in Evans (1970),
but only recent advances in electrical engineering make the animal–borne sensors feasible.
Miniaturized sensors (tags) can now be attached to the animal and relay data about the
environment as well as an animal’s movements, behavior, physiology, something which is
usually referred to as “bio–logging” (Rutz and Hays, 2009). The oceanographic data collected
in bio–logging has successfully filled in the some “blind-spots” in parts of the oceans where
little or no other data are currently available (Boehme et al., 2010). For example, animal–
borne sensors can collect data at high latitudes or during the winter, where few ship–based
measurements are available. When compared to the Argo1 floats, which can also work in
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those situations, the animal-borne sensors can take measurements in the ocean currents or
upwelling zones, where the Argo floats will drift away. We also need have little concern that
animal-borne sensors can crash into sea floor or ice, since the animals, unlike Argo floats, can
“automatically” avoid those obstacles.

There are numerous examples showing how data collected in bio–logging can help improve
our knowledge of the ocean’s environment. Lydersen (2002) first deployed sensors on white
whales to monitor the salinity and temperature structure of an ice–covered Arctic fjord.
The data collected by Southern elephant seals helped to identify the Antarctic circumpolar
current fronts in the South Atlantic (Boehme et al., 2008) and the seasonal evolution of
the upper–ocean adjacent to the South Orkney Islands, Southern Ocean (Meredith et al.,
2011). Isachsen et al. (2014) combined Argos floats data with the data collected by hooded
seals and so revealed that the Nordic Seas are getting warmer and saltier. Besides the
ocean hydrographic data, the originally poorly sampled bathymetry map of the Antarctic
continental shelf was improved using data collected by elephant seals (Padman et al., 2010).
More examples on the contributions of animal–borne sensors can be found in Boehme et al.
(2010).

In most of the studies above, the data were first transmitted to a satellite by the sensor
and then downloaded from the satellite for analysis. Due to limitations in the communica-
tion bandwidth and cost, a very small amount of data can be transferred in this work–flow
and usually we can only obtain data with a low spatial–temporal resolution. For example
in Boehme et al. (2008), only two temperature and salinity profiles2 are obtained per day
and the spatial resolution of these data are 20–50km. Such low resolution data markedly re-
stricts the scope and contribution of the scientific findings from the studies with animal–borne
sensors (Boehme et al., 2008).

Fortunately some species of animals carrying the sensors, like elephant seals or fur seals,
have a relatively fixed “home” (breeding habitat) on an island or sea shore, which is usually
the start and end points of their foraging trips. Most sensors deployed in bio–logging are
actually attached to the animals on those islands (see e.g. Boehme et al., 2008; Nordstrom
et al., 2013), where they can be also retrieved when the animals return. It is thus possible
to circle around the bottle neck of satellite communication by storing the data locally on
the sensor and then download data after they are retrieved. This approach can provide a
nearly continuous record of the sea water temperature as well as variables related the animal’s
movement and behavior, e.g. diving depth, acceleration etc., with temporal resolution of 1
second or even higher (see e.g. Nordstrom et al., 2013; Wilson et al., 2008).

Such high–resolution bio–logging data has contributed much to our knowledge of animal’s
behavior and movement pattern (Dowd and Joy, 2011) and energy expenditure (Wilson
et al., 2007), but few studies have taken advantage of this high–resolution record of water
temperature to achieve more knowledge about the ocean environment or the relationship
between the tracked animal and the environment (Nordstrom et al., 2013). The main reason
here is the lack of an accurate and high–resolution path (in longitude and latitude) of the
tagged animal so we cannot know where the temperature is measured. The same reason also
limits our understanding of the relationship between the animal’s habitat preference and the
environment (Benoit-Bird et al., 2013a,b).

2Profile here means a sequence of measurements at different depths
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Currently in bio–logging, an animal’s location is usually determined by the direct mea-
surements from Global Positioning System (GPS Hofmann-Wellenhof et al., 1993), which
can only work when the sensor floats on the water surface and has direct lines of sight to
four or more satellites. However, the marine mammals usually spend very little time on the
sea surface and the GPS sensor only provides sparse and irregular observations of the ani-
mal’s path. Some studies today impute the gaps between two GPS observations via linear
interpolation (Benoit-Bird et al., 2013b; Nordstrom et al., 2013) or a statistical model fit-
ted to the GPS observations. Examples of the latter approach include the correlated random
walk (Jonsen et al., 2005) and continuous time correlated random walk (Johnson et al., 2008).
Both the linear interpolation and the more sophisticated models impose certain parametric
assumptions that may incur bias in the imputed path.

In order to fill in the gaps between GPS observations, a “Dead–Reckoning” (DR) tag,
which usually consists of an accelerometer, a magnetometer, a time–depth–recorder (TDR)
and other supporting components, is also deployed on the instrumented animals (see e.g.
Nordstrom et al., 2013; Wilson et al., 2007). This DR tag can sample at infra–second fre-
quencies, like 16Hz or 32Hz, so a detailed record of the animal’s movement can thus be
obtained. After retrieving the tag, we can download the data and use the so–called “Dead–
Reckoning Algorithm” (DRA, Elkaim and Decker, 2006; Wilson et al., 2007) to reconstruct
an estimated path from the DR tag data. The basic idea of DRA is as follows: estimate
the animal’s orientation (direction of velocity) from the accelerometer and magnetometer
readings by solving the Wahba’s problem (Wahba, 1965); next estimate the animal’s speed
(norm of the velocity) using the TDR data or by assuming a known constant; estimate the
path by integrating the velocity from a known starting point. This estimated path is called
the “Dead–Reckoned” (DR) path hereafter.

The temporal resolution of the DR path is decided by the sampling frequency of the
DR tag, namely, 1/16 or 1/32 of a second and the spatial resolution of it can be as fine as
a few meters. The DR path provides remarkably detailed information about the animal’s
movement, especially fine scale fluctuations that the GPS is not able to capture. However,
the DR path can be seriously biased due to measurement error or systematic bias in the DR
tag, assumptions and errors in the orientation and speed estimation, and discretization bias
in the integration, etc (Wilson et al., 2007). A more detailed review of the DRA is provided
in Appendix A. As shown later in our case study, the bias of the DR path can be as large as
100km at the end of a seven–day trip. Therefore, we must correct the bias in the DR path
before applying it, to provide an in–situ record of the oceanographic variables as well as to
address other biological or ecological questions.

Fortunately, extensive tests have demonstrated the unbiasedness and high precision of the
GPS observations with standard errors around a couple of hundred meters (Bryant, 2007;
Hazel, 2009) so they can be used to correct the DR path. The conventional correction method
in Wilson et al. (2007) can be summarized as follows: denote the DR path (in one dimension)
as x1, x2, . . . , xT at times t = 1, 2, . . . , T and the GPS observations at times 1 and T are y1, yT
respectively; assume without loss of generality, that x1 = y1 = 0 and that the corrected path
η̂t is calculated as,

η̂t = xt +
yT − xT
T − 1

(t− 1), (1)

which evenly distributes the bias yT − xT evenly over the individual time points. The DR
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path between two GPS observations is directly shifted to the locations indicated by the GPS
observations, namely η̂1 = y1 and η̂T = yT . This procedure is repeated for all the sections
separated by the GPS observations to correct the whole path. Wilson et al. (2007) did
not provide any justification for this conventional correction method. Also, it fails to take
account of the measurement error in the GPS observations, nor does it provide an uncertainty
statement about the corrected path. According to Nordstrom et al. (2013), the bio–logging
community has concern about the validity of the corrected path and few applications are
developed based on it.

In this paper, we use the Bayesian Melding (BM) approach to develop a statistically
rigorous method for correcting the bias in each of the geographical coordinates of the DR
path. That approach was pioneered by Fuentes and Raftery (2005) to combine the direct
observations of air–pollutant level from a sparse network of monitoring stations and the
output from deterministic chemical transportation (computer) model outputs, at each pixel
of a map based on known pollutant source and geophysical information. The BM approach
was later adapted for use in a variety of different fields, such as modeling hurricane surface
wind (Foley and Fuentes, 2008), ozone level (Liu et al., 2011), and wet deposition (Sahu, 2010),
etc. All these applications have demonstrated the remarkable flexibility and effectiveness of
the BM approach. When comparing our application to that in Fuentes and Raftery (2005),
the GPS observations play the role of the station measurements while the DR path plays the
role of the computer model output. Using the GPS to correct DR path can also be viewed as
combining the location information from the GPS and DR path, which is the very strength
of BM. For each coordinate the method provides Bayesian credible intervals to quantify the
residual uncertainty about the corrected coordinates. The estimated path can then be found
by combining in the obvious way, the separate curves for the two geographical coordinates.

Our BM model assumes the animal’s path is a Brownian Bridge process and the GPS
observations are unbiased observations of this true process with i.i.d. normal measurement
errors. The DR path is assumed to be the sum of the true process, a systematic error
component that is modeled by a parametric function, and a random error component that is
modeled by a Brownian motion process. As discussed in the sequel, these model choices are
supported by the biological and ecological literature.

All components in our BM model are Gaussian and linear, which makes inference con-
ceptually easy. However in seeking to retain the benefits of the high–resolution DR path we
encounter a big data problem. For example, a typical one–week foraging trip in our case
study, with 16Hz sampling frequency, resulted in T = 7 × 24 × 3600 × 16 = 9, 676, 800 time
points. The large T rules out the decomposition and storage of the covariance matrix of the
T–dimensional true process on most computers. But we show how that high computational
burden we can be dramatically reduced by coupling the conditional independence properties
of the Brownian Bridge and Brownian Motion processes with some judicious approximations
to the likelihood. The computations needed to implement the resulting BM model can be
completed on a regular laptop in under five minutes.

To illustration the capability of our BM approach, we apply it to data from two foraging
trips of northern fur seals in the summer of 2009 in the Bering sea, observed as part of the
Bering Sea Integrated Research Program (BSIERP) (Benoit-Bird et al., 2013b; Nordstrom
et al., 2013). Cross–validation studies carried out for model selection show our method to be
superior to the conventional bias correction method in Wilson et al. (2007).
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The paper is organized as follows. Section 2 introduces our BM model. Section 3 describes
how model inference can be carried out efficiently. The real data application together with
cross–validation studies is found in Section 4. Section 5 concludes this paper and discusses
some future work.

2 Bayesian Melding model

In this section, we adopt the BM approach to combine the information from the accurate
but sparse GPS observations and biased but dense DRA results. For simplicity, the two
dimensions of the path (latitude and longitude) are dealt with separately. Thus abstractly
we are considering a one dimensional path over time which we denote by η(t) at discrete time
points t = 1, 2, . . . , T . The time unit plays no essential role in the mathematical development
our theory. Moreover the approach works just as well with unequally spaced time points, in
other words, for arbitrary t1, t2, . . . , tT . But for expository simplicity we work with 1 : T as
the real bio–logging data are equally spaced. As in the previous BM literature, we take η(t)
to be a Gaussian process, with

η(1 : T ) ∼ N(f(1 : T ),R(1 : T, 1 : T )), (2)

where the f(·) denotes the process mean function and R, its covariance matrix. The notation
f(1 : T ) stands for the vector {f(1), f(2), . . . , f(T )}T while R(1 : T, 1 : T ) is a T×T covariance
matrix with R(t, t′) = Cov (η(t), η(t′)). Throughout this paper, bold faced characters are used
exclusively to represent vectors or matrices.

Various choices are available for this Gaussian process. A common one (Fuentes and
Raftery, 2005; Sacks et al., 1989) assumes that f to be a simple parametric model, e.g., a
constant or a linear function of the covariates, and R(t, t′) = σ2ρ(|t − t′|), where ρ(·) is an
isotropic correlation function from a class such as the Matérn or power exponential. However,
this popular stationary Gaussian process is not suitable for our application. As noted above,
high–resolution data can only be obtained by retrieving the tag, which means that the start
and end points of the path are fixed (usually the same location), which is illustrated in
Figure 1. Apart for the start and end points, the path is unknown, and hence random in
our Bayesian framework. Its variation is relatively large in the middle and small when close
to the known start and end points. These features of the path inspire us to model it with a
Brownian Bridge process, whose mean and covariance functions are:

f(t) =A+ (B −A)
t− 1

T − 1

R(s, t) =σ2H
(min(s, t)− 1)(T −max(s, t))

(T − 1)

where η(1) = A and η(T ) = B are the known start and end points of the path, while σ2H
is the variance parameter. Notice that R(1, ·) = R(·, T ) = 0, in accordance with the known
start and end points η(1) and η(T ). Also, R(t, t) increases with t when t < (T − 1)/2 and
decreases with t for t > (T − 1)/2, reflecting the fact that the variation of the path is large
in the middle. Another noteworthy property of our covariance matrix R is its form as the
product of a scalar σ2 and a matrix, the latter depending only on the time points. To clearly
represent the parameters of the Brownian Bridge process, we introduce the notation

BB(A,B, TS , TE , σ
2) (3)
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for a Brownian Bridge process, which starts from A at time TS and ends in B at time TE
with a variance parameter σ2, namely f(t) = A + (B − A) t−TS

TE−TS and covariance function

R(s, t) = σ2H
(min(s,t)−TS)(TE−max(s,t))

(TE−TS) .

Our choice of the Brownian Bridge model is well supported in the biology and ecology
literature. According to Humphries et al. (2010), marine mammals tend to exhibit Brownian–
like movements in environments with abundant food resources, such as the ocean around
Bogoslof island where our case study is centered, one believed to be just such a resourceful
environment (Benoit-Bird et al., 2013a). Also, a Brownian Bridge model was proposed Horne
et al. (2007) to model the habitat use for a wide range of animal species. This model
is well accepted by the biology and ecology field and further improved by Sawyer et al.
(2009), Kranstauber et al. (2012), and Kranstauber et al. (2014). Many other examples of
modeling an animal’s path with Brownian Bridge processes can be found in the references of
the above papers.
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Figure 1: The longitude in the GPS observations of the two trips in our case study of northern
fur seals. Both trips started and ended at Bogoslof Island and the horizontal line indicates
the longitude −168.035◦E of the island. The time unit in this figure is the proportion of the
total time of this trip.

The GPS observations of the locations are denoted by Y (tk), k = 1, 2, . . . ,K, t1 = 1, tK =
T, tk ∈ {2, . . . , T − 1}, k = 2, . . . ,K − 2, which are unbiased observations of the true location:

Y (tk)|η(tk)
iid∼ N(η(tk), σ

2
G), (4)

for k = 2, . . . ,K−2. The known start and end points assumption implies that Y (t1) = η(t1),
and Y (tK) = η(tK) are known.

Next, we use X(t), t = 1, 2, . . . , T to denote the DR path without any error correction.
To incorporate the bias of the DR path, we assume:

X(t) = η(t) + h(t) + ξ(t), (5)

where h(t) is a parametric bias term designed to capture trend if any in the DRA path
while ξ(t) denotes another Gaussian process independent of η(t) that captures any irregular
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components in the deviation of the DR path from the truth:

ξ(1 : T ) ∼ N(0,C(1 : T, 1 : T )).

For the parametric bias component h(t), we have considered various models, e.g. h(t) =∑Q
i=1 βit

i−1. The residual bias ξ(t) is assumed to be a Brownian motion process (random
walk of order 1) whose covariance function is therefore

C(s, t) =σ2D(min(s, t)− 1).

We believe the Brownian motion process to be a reasonable approximation to the gradually
accumulated error in the DRA. If we assume the error in the velocity estimates from the
DRA at each time point is i.i.d. normal, the error in the integrated path is then a Brownian
motion.

The final ingredients in our BM model are the prior distributions of the parameters.
For notational simplicity, all densities are denoted by square brackets [. . .] throughout this
report. For σ2G, we assume a known constant based on the previous extensive tests of the
Fastloc R© GPS device. The priors of the other two variance parameters are chosen to be the
reference priors, [σ2H ] ∝ 1

σ2
H

and [σ2D] ∝ 1
σ2
D

, which is a non–informative prior on the log scale

([log(σ2H)] ∝ 1). For β = {β1, β2, . . . , βQ}T , a non–informative flat prior [β] ∝ 1 is used. All
these parameters are assumed to be independent of each other.

For expository simplicity in describing the joint distribution of all the data and parame-
ters, the following notations are introduced:

• The unknown part of the true path is denoted by η = η(2 : (T−1)), a T−2 dimensional
vector.

• GPS observations of the unknown part of the path are denoted by Y = {Y (t2), Y (t3), . . . , Y (tk−1)}T ,
a K − 2 dimensional vector.

• The DR path X = {X(2 : (T − 1)), X(T )− Y (T )}T , a vector of dimension T − 1;

• For the two unknown variance parameters φ = {σ2H , σ2D}T .

The joint likelihood of our model is

[X,Y,η,β,φ] = [φ][β][η|φ][Y|η][X|β,φ,η]. (6)

To obtain an estimate of the animal’s true path and its uncertainty, we seek the posterior
distribution

[β,η|X,Y] =

∫
[β,η|X,Y,φ]︸ ︷︷ ︸

(1)

× [φ|X,Y]︸ ︷︷ ︸
(2)

dφ. (7)

Here we also include the β term, which can be used to assess the bias of the DRA. The
posterior mean, denoted by η̃(t), can be an estimate of the animal’s path and the posterior
standard error, denoted by σ̃(t) provides an uncertainty statement about the estimated path.
The point–wise 95% credible interval for η(t) can be constructed as

[η̃(t)− 1.96σ̃(t), η̃(t) + 1.96σ̃(t)]. (8)
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3 Model Inference

To calculate the posterior (7), we first fix the variance parameters φ and calculate part (1) in
Equation (7) and then integrate over the posterior of φ. The first part of this section intro-
duces how the components of (7) can be efficiently evaluated and the second part describes
how we approximate the integral. A comparison of our BM approach to the conventional
approach is included in Section 3.3.

3.1 Evaluating components of the posterior

For notational simplicity, we use 〈·|·〉 to denote [·|·,φ], namely 〈η|X,Y〉 = [η|X,Y,φ]. As
we specify our model in a Gaussian and linear fashion, it is straightforward to show that
〈β,η|X,Y〉 is a multivariate Gaussian density,

〈β,η|X,Y〉 ∝ exp

{
−1

2

[
(ζ −M−1

1 M2)
TM1(ζ −M−1

1 M2)
]}

(9)

where ζ = {βT ,ηT }T and M1,M2 are derived in Appendix B.1. Although the multivari-
ate Gaussian posterior makes the inference conceptually easy, calculating its posterior mean
M−1

1 M2 and covariance matrix M−1
1 actually involves a matrix decomposition with compu-

tational complexity of order O(T 3), which is a tremendous computational burden when T
is large. It is possible to avoid the O(T 3) matrix decomposition with certain sparse matrix
techniques together with the Sherman–Morrison–Woodbury formula (Henderson and Searle,
1981), but those techniques still require the storage of some huge matrices and complicated
matrix calculations. This pushes us to further reduce the complexity of (9).

It is easily seen that we have more information (data) about ηG , η(t1:K) where the GPS
observations are available than where they are not. For η(1 : T \ t1:K), we only have the DR
path. So our first step is to break η into two sets, that is

〈β,η|X,Y〉 = 〈η(1 : T \ t1:K)|β,ηG,X,Y〉〈β,ηG,X,Y〉. (10)

We can then use the Markovian property of the Brownian Bridge process (see e.g. Stirzaker
and Grimmett, 2001) to simplify (10) as:

〈β,η|X,Y,φ〉 =

{
K−1∏
k=1

〈η(tk + 1 : tk+1 − 1)|η(tk), η(tk+1),β,X,Y〉

}
× 〈β,ηG|X,Y〉. (11)

In this way, we partition the long η series into small pieces separated by the GPS observations.
We also exploit the Markovian property of the Brownian Motion and find the kth term in the
first part of (11) can be simplified as

〈η(tk + 1 : tk+1 − 1)|η(tk), η(tk+1),β,X,Y〉 =

〈η(tk + 1 : tk+1 − 1)|η(tk), η(tk+1),β,X(tk : tk+1)〉. (12)

All the derivations for (11) and (12) are provided in Appendix B.2. In (12), the posterior of
η(t) between two GPS points can be evaluated only with the corresponding DR path together
with the posterior distribution of the two GPS points and β. This remarkably simple change
greatly reduces the memory cost when computing the posterior of the long sequence and

8



enables us to easily parallelize the whole calculation. Moreover, both Brownian Bridge and
Brownian Motion processes conditioned on two end points are Brownian Bridge processes,
such that,

η(tk + 1 : tk+1 − 1)|η(tk), η(tk+1) ∼BB(η(tk), η(tk+1), tk, tk+1, σ
2
H)

ξ(tk + 1 : tk+1 − 1)|ξ(tk), ξ(tk+1) ∼BB(ξ(tk), ξ(tk+1), tk, tk+1, σ
2
D).

This fact is exploited to completely avoid the matrix inverse calculation when evaluat-
ing (12), which further reduces the computational burden. The derivations are included
in Appendix B.3.

However, when evaluating 〈β,ηG|X,Y〉 in (11), we still need to deal with the long se-
quence X. However, the Y is an unbiased observation of ηG and therefore 〈ηG|X,Y〉 can
be well approximated by 〈ηG|Y〉. This approximation is exceptionally good when σ2D > σ2G.
For β, it can be well inferred from the difference between XG , X(t1:K) and Y. In this way,
we introduce the following approximation:

〈β,ηG|X,Y〉 ≈ 〈β,ηG|XG,Y〉. (13)

With similar arguments, we also approximate the posterior of φ by,

[φ|X,Y] ≈ [φ|XG,Y] (14)

The explicit expressions for (13) and (14) are included in Appendix B.4. Our simulations
which are designed to mimic the real data sets have shown that the impact of the two
approximation errors in (13) and (14) is negligible.

In summary, the posterior of η is approximated as follows:

[η,β|X,Y] =

∫
[η,β|X,Y,φ][φ|X,Y]dφ

=

∫
〈η(1 : T \ t1:K)|β,ηG,X,Y〉〈ηG,β|X,Y〉[φ|X,Y]dφ

=

∫ {K−1∏
k=1

〈η(tk + 1 : tk+1 − 1)|β, η(tk), η(tk+1),X〉

}
〈ηG,β|X,Y〉[φ|X,Y]dφ

=

∫ {K−1∏
k=1

〈η(tk + 1 : tk+1 − 1)|β, η(tk), η(tk+1),X(tk : tk+1)〉

}
〈ηG,β|X,Y〉[φ|X,Y]dφ

≈
∫ {K−1∏

k=1

〈η(tk + 1 : tk+1 − 1)|β, η(tk), η(tk+1),X(tk : tk+1)〉

}
〈ηG,β|XG,Y〉[φ|XG,Y]dφ.

(15)

Next, we will carry out the integration in Equation (15).

3.2 Integration over the variance parameters φ

According to the BM literature (Liu et al., 2011), the integration in (15) can be carried
out by MCMC. However, we need to avoid the heavy computational burden of the MCMC
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techniques in our application and it may not be practical to store the MCMC samples of
the high dimensional parameter η. The first alternative is to avoid the integration via the
empirical Bayesian approach as in Casella (1985):

[β,η|X,Y] ≈ [β,η|X,Y, φ̂],

where φ̂ is the maximum likelihood estimate of φ after η,β are marginalized out,

φ̂ = arg max
φ

log([φ|XG,Y]). (16)

The empirical Bayesian approach is computationally simple, especially when we can ex-
plicitly evaluate the marginal likelihood. However, it fails to reflect the uncertainty in φ
and thus it underestimates the uncertainty in the posterior of η. To overcome this issue,
we use a numerical integration method like that in INLA (integrated nested Laplace approx-
imation, Rue et al. (2009)), which approximates the integration on a grid decided by the
likelihood surface.

Let H denote the 2×2 Hessian matrix of φ̂ = {σ̂2H , σ̂2D}T in (16) and Σ = H−1. With the
eigenvalue decomposition Σ = AΛAT , the space of φ can be explored by φ(z) = φ̂+AΛ1/2z,
where z is a 2× 1 vector. To find the grid for numerical integration, we start from z = 0 and
search in the positive direction of z1, that is, we increase j ∈ N+ and z = (jδz, 0) as long as

log([φ(0)|XG,Y])− log([φ(z)|XG,Y]) < δπ,

where δz is the step size and δπ controls the magnitude of probability mass that will be
included in the numerical integration. After searching on the positive side, we switch direction
and search on the negative side of z1. This procedure is repeated for both dimensions of z. For
our BM model above, if the search stops at J+

1 , J
+
2 steps in the positive directions of z1 and z2

respectively and J−1 , J
−
2 in their negative directions, a grid of size (J+

1 +J−1 +1)×(J+
2 +J−2 +1)

is used in the numerical integration and the points on this grid are zj1,j2 = δz(j1, j2), with
j1 ∈ (−J−1 ,−J

−
1 + 1, . . . , 0, . . . , J+

1 ) and j2 ∈ (−J−2 ,−J
−
2 + 1, . . . , 0, . . . , J+

2 ). The integral
in (15) is approximated by

[η,β|X,Y] ≈
J+
1∑

j1=−J−
1

J+
2∑

j2=−J−
2

wj1,j2 × [η,β|φ(zj1,j2),X,Y], (17)

where

wj1,j2 =
[φ(z(j1, j2))|XG,Y]∑

j1

∑
j2

[φ(z(j1, j2))|XG,Y]
.

Here (17) resembles Equation (5) of Rue et al. (2009). As the η,β conditioning on φ follows
a multivariate Gaussian distribution, the posterior [η,β|X,Y] can be approximated by a
mixture of multivariate Gaussian densities, whose mean and variance can be easily calculated.
The detailed expressions are in Appendix B.6.
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3.3 Comparison to the conventional bias correction method

When compared to the conventional bias correction method in (1), our BM approach can
account for both data and model uncertainty and provide a CI for the estimates of the
animal’s path. Moreover, there is an interesting connection between the BM posterior mean
η̃ and the conventional corrected path η̂ in Equation (1). Without loss of generality, let K = 2
(no GPS observations except the known start and end points) and Y (1) = X(1) = 0. So (1)
can be written as

η̂(t) = Y (T )
t− 1

T − 1
+

[
X(t)−X(T )

t− 1

T − 1

]
.

For BM, if h(t) = 0 for all t and φ is known, the posterior mean η̃ under the above assumptions
can be simplified into

η̃(t) = Y (T )
t− 1

T − 1
+

σ2H
σ2H + σ2D

[
X(t)−X(T )

t− 1

T − 1

]
.

The first parts of η̂(t) and η̃(t) represent linear interpolations between Y (1) = 0 and Y (T ),
which determines the basic trend of the animal’s path between two known points. The
second part is a “bridge” constructed by the X(t), which starts at X(1) = 0 and ends at
0 = X(T ) − X(T )T−1T−1 . This bridge can be treated as the “detail” for the animal’s path,
which is then added to the basic trend of the first part.

The difference between the conventional method and the simplified BM approach is the
weight on the “detail”. In the conventional approach, the “detail” is directly added to the

basic trend while BM shrinks the detail by a factor of ρ =
σ2
H

σ2
H+σ2

D
. According to our model, we

cannot distinguish between η(t) and ξ(t) in X(t) at those non–GPS points, as we only observe
the sum of them, but we know that η(t) accounts for the σ2H part of the total σ2H+σ2D variance

(they are both of mean zero after Y (T ) t−1T−1 is removed). In this way, a fraction ρ =
σ2
H

σ2
H+σ2

D

of the detail is treated as signal in η(t) and added to the basic linear trend.

Notice here we only compare the most simplified BM approach to the conventional ap-
proach. In practice, the BM η̃ is far more complicated than the form shown above with the
parametric part from β and the integration over φ. According to our simulations and cross–
validation of real data in Section 4.2, our η̃ is a substantial improvement on the conventional
estimate η̂.

4 Case studies

The proposed BM approach was applied to two data sets collected in the 2009 Bogoslof Island
northern fur seal study (Benoit-Bird et al., 2013b). These two data sets, denoted by “Trip
1” and “Trip 2” came from two trips of different female seals. The first trip lasted about 6
days and second trip lasted about 7 days. The GPS device in this study was programmed to
make one observation attempt every 15 minutes but a large fraction of these attempts failed
to obtain a valid observation of the coordinates. For Trip 1, 274 GPS observations were
available (including the start and end points), with an average gap of 36 minutes between
two consecutive GPS observations. 130 GPS observations were available for Trip 2, with an
average gap of 80 minutes between two consecutive GPS observations. It is noteworthy that
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these GPS observations are not regularly spaced in time and the sample quantiles of the time
gaps between two consecutive observations are summarized in Table 1. For the DR path, the
DR tag was originally programmed to sample at 16Hz, but the DRA was only performed for
the thinned data at 1Hz, which was believed to be sufficiently fine for the purpose of tracking
the animals (Benoit-Bird et al., 2013b).

Table 1: The sample quantiles in minutes of the time gaps between two consecutive GPS
observations in our case study.

Min 10% 25% 50% 75% 90% Max

Trip 1 14.75 15.00 15.45 18.40 31.68 82.79 953.65
Trip 2 14.75 15.00 15.05 30.00 113.05 130.77 698.47

4.1 BM analysis with a constant bias term

As one illustrative example of our approach, we let β = β0 = h(t), for the parametric bias part
in (5). The GPS observations of longitude and latitude are projected onto a plane in a point–
wise fashion as in Wilson et al. (2007), such that the distance between any two consecutive
GPS observations on this plane is their great circle distance and the angle between the line
connecting the two points and the y–axis (latitude direction) equals the initial Bearing3

between them. The projected x–direction and y–direction in kilometres are called “Easting”
and “Northing” to distinguish them from the longitude and latitude in degrees. As the two
dimensions are analyzed separately, we have four data sets in total, which are referred to as
“Trip 1 Northing”, “Trip 1 Easting”, “Trip 2 Northing”, and “Trip 2 Easting”.

The GPS measurement variance in all of the analysis that follows was fixed at σ2G = 0.0625,
which was chosen based on Bryant (2007) and the average observed number of satellites in
those two trips. For the numerical integration part, δz = 1 and δπ = 3 were set according to
suggestions in Rue et al. (2009), which often led to around 33 grid points in our data sets.
All the computations required to obtain the posterior mean and variance for one data set
can be done under 5 minutes of wall clock time on a regular laptop. The empirical Bayesian
estimates of φ are summarized in Table 2.

In Figure 2, we plot the GPS observations and DR path from Trip 1 latitude (Northing)
together with our BM posterior mean and 95% credible interval. The bias of the DR path
dramatically increases with time and it is around 100KM at the end of this trip. Nonetheless,
the DR path incorporates some fluctuations that match those seen in the fluctuations of the
GPS observations. Our BM approach successfully moves the DR path results to the correct
position taken to be the one indicated by the GPS points, while keeping the fluctuations of
the DR path to reflect the animal’s fine scale movements.

The scale of Figure 2 is a magnified plot that more fully displays how our approach works
in the fine scale. Therefore, Figure 3 zooms into the 2000–2400 minute portion of Figure 2.
The conventional bias correction from Wilson et al. (2007) and linear interpolation between
GPS observations are also included. The posterior mean from BM appears to be a shrunken
version of the conventional bias correction, where the bumps in the conventional method are

3Initial Bearing, also known as the forward azimuth, denotes the angle between the great circle connecting
the two points on the earth and the north direction at the former point in time.
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Figure 2: The GPS observations and DRA outputs of the Trip 1 Northing data set together
with the BM results for it. The red points are the GPS observations. The blue curve is the
uncorrected DR path. The black curve is the posterior mean of η from our BM model. The
grey curves connect the 95% point–wise credible intervals at all the time points.

damped to the straight line connecting the two GPS points. This verifies our findings in
Subsection 3.3.

Moreover, the CI for η in Figure 3 clearly displays a “bridge” structure. Namely, the CI
is narrow when η(t) is close the GPS observations and becomes wider in between two GPS
points. This is plausible as we have direct observations of the path at the GPS points but
less accurate information from the DRA for points in between GPS points. Plots obtained
by analyzing the other three data sets are quite similar to those seen here in substance and
hence are omitted for brevity.

In Table 2, we also summarize the averaged posterior standard errors (APSEs) of the
η(t), t = 1, 2, . . . , T found in the four data sets. For the first trip, the APSE is around 500
meters in both dimensions, while it is around 1.3KM for the second trip. The differences in
the averaged SEs are mainly decided by the gap between GPS observations. The longer the
gap, the less accurate the corrected path is.

4.2 Cross validation comparisons

We also did a leave-one-out cross validation (LOOCV) analysis to further assess our BM
approach. Here one GPS observation was deleted at a time when the model was trained.
The difference between true observation and the prediction from our model was calculated
and summarized as the cross validation root mean squared error (CV-RMSE). We also checked
whether this observation is covered by the 95% posterior CI of η(t), which is summarized
as the coverage percentage. The LOOCV was also performed for the conventional method
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Figure 3: Zoom into the 2000-2400 mins part of Figure 2 (Trip 1 Northing data and BM
results). The blue curve is the uncorrected DR path. The black curve is the posterior mean
of η from our BM model. The grey curves connect the 95% point-wise credible intervals at
all the time points. The conventional bias correction in Equation (1) is also included as the
brown curve.

and linear interpolation (connecting two consecutive GPS by a straight line), where only the
CV-RMSE was obtained. The results are presented in Table 3.

From Table 3, we see that the actual coverage of our 95% CIs is higher than the nominal
level, which are further discussed in 4.4. On the other hand, it is easy to see that our BM
approach has a smaller CV-RMSE than the linear interpolation method in all the four data
sets while the conventional method has a larger CV-RMSE than the linear interpolation
in two out of the four data sets, which indicates that the conventional method fails to use
the information from the DR path appropriately. In this comparison of our BM to the
conventional method, the CV-RMSE of our BM approach is smaller than those from the
conventional method by around 1/3 in three of the four data sets. For Trip 2 Easting, the
CV-RMSE of our method is slightly larger than that of the conventional method. This might
be caused by the fact that h(t) = β0 failed to model the bias of DRA well and inspired us to
consider different parametric models for h(t) of (5).

4.3 Comparison of different models of h(t) for the Trip 2 longitude data
set

Here polynomials h(t) =
∑Q

i=1 βit
i−1 up to order 6, (Q = 0, 1, 2, . . . , 6) were considered for

Trip 2 Easting. The empirical Bayesian parameter estimates σ̂2H and σ̂2D under these models
are in Table 4. It is interesting to find that estimates of σ2H almost stay the same when Q
increases. This is plausible as it is the parameter for the animal’s Brownian Bridge movement,
which is mainly decided by the GPS observations. On the other hand, the estimates of σ2D
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Table 2: Empirical Bayesian estimates of φ (σ̂2H , σ̂
2
D) and the averaged posterior standard

error (APSE) in kilometre (KM) of η(t) in the BM analyses of the four data sets from our
case study.

Data σ̂2H σ̂2D APSE (KM)

Trip 1 Easting 0.0801 0.0353 0.5243
Trip 1 Northing 0.0267 0.0428 0.4438
Trip 2 Easting 0.1031 0.0767 1.2880
Trip 2 Northing 0.1029 0.1233 1.4510

Table 3: Results from the leave-one-out cross validation studies of the four data sets in our
case study. The first column is the actual coverage percentage for the BM posterior 95%
CI. The cross validation root mean squared errors (CV-RMSE) in kilometres (KM) from
our BM approach, conventional method from Wilson et al. (2007) (Equation (1)), and linear
interpolation are in the last three columns.

BM Approach Conventional Method Linear Interpolation
Data Set Coverage CV-RMSE CV-RMSE CV-RMSE

Trip 1 Easting 99.3% 0.374 0.485 0.433
Trip 1 Northing 98.2% 0.386 0.496 0.509
Trip 2 Easting 99.2% 1.027 1.022 1.467
Trip 2 Northing 100% 0.849 1.148 1.061

decrease with increases in Q, as less randomness remains to be explained by the Brownian
motion process when more flexible parametric models are characterized by h(t). The smaller

σ2D also yields a larger ρ =
σ2
H

σ2
H+σ2

D
, which indicates that more confidence can be placed on

the DR path X(t) and we thus get a more accurate η(t). This explains why the posterior
averaged SE decrease with increases in Q.

We also compared the above models by means of the LOOCV and summarize the results
in Table 4. Clearly, the prediction accuracy of our model is improved by certain parametric
models for h(t). Models with Q > 1 have smaller CV-RMSE than the conventional method
(1.022 as from Table 3). When Q = 3, the CV-RMSE is minimized. The coverage of the
posterior CI varies slightly among those models and they are higher than the nominal coverage
level.

4.4 Are the CI’s conservative? Leave-5-out Cross Validations

In the above LOOCV, the actual coverage percentage of the CI is higher than the nominal
level, which brings the concern that the CI is conservative. However, LOOCV just evaluated
the performance of our method in a short period without GPS observations,(e.g. mostly
around 30 mins) while the time gaps between GPS observation in our case study can be much
long than that, as shown in Table 1. In order to assess the performance of our method in a
longer period without GPS observations, we performed leave-5-out cross validations (L5OCV)
of the same data sets. The gaps created by L5OCV were around 90min (Trip 1) and 150min
(Trip 2), which are larger than the original 90% sample quantiles of the gaps in Table 1.
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Table 4: Comparisons of different models for h(t) in (5) for Trip 2 Easting (longitude) data.
The first three columns of this table summarize the empirical Bayesian estimates of σ2H , σ

2
D

and the averaged posterior SE (APSE) in kilometre (KM). The last two columns are the
cross-validation root mean squared error (CV-RMSE) and actual coverage percentage of the
BM posterior 95% CI in the leave-one-out cross validation.

Q σ̂2H σ̂2D APSE (KM) CV-RMSE Coverage

0 0.1032 0.0827 1.314 1.035 0.992
1 0.1032 0.0767 1.288 1.027 0.992
2 0.1031 0.0693 1.252 1.018 0.984
3 0.1029 0.0458 1.101 0.969 0.984
4 0.1029 0.0462 1.104 0.969 0.984
5 0.1029 0.0447 1.093 0.981 0.992
6 0.1028 0.0379 1.035 1.005 0.977

Thus L5OCV offered a more realistic evaluation of our method. Similarly as in LOOCV,
five observations were left out at a time when the model was trained the difference between
the observations and our model predictions were calculated. The results are summarized in
Table 5. From this table, we can easily verify that the coverage percentage are around the
nominal level and thus the CI’s from our BM are not conservative. The CV-RMSE’s from
Table 5 once again demonstrate the superiority of our approach over the conventional method
and linear interpolation.

Table 5: Results from the leave-five-out cross validation studies of the four data sets. The
organization of this table is the same as Table 3.

BM Approach Conventional Method Linear Interpolation
Data Set Coverage CV-RMSE CV-RMSE CV-RMSE

Trip 1 Easting 97.8% 0.726 1.039 1.131
Trip 1 Northing 95.9% 0.803 1.248 1.156
Trip 2 Easting 93.7% 2.516 2.674 3.839
Trip 2 Northing 92.9% 3.061 3.326 4.436

5 Conclusions

In this paper, we have developed a Brownian Bridge based Bayesian Melding approach to
combine the sparse but accurate GPS observations with the high-resolution but biased DR
path for the tracking of marine mammals. The posterior mean from our BM approach
offers an accurate and high-resolution path of the tracked animals and the posterior credible
intervals provides a reasonable statement of the uncertainty in our inferences. Moreover,
our approach exploits the conditional independence property of the Brownian Bridge and
Brownian Motion to dramatically reduce the heavy computational burden involved in dealing
with large data sets. This work enables us to obtain a high–resolution in–situ record of
the hydrographic data collected by the marine mammals, which may help to broaden our
knowledge about parts of the ocean that are originally hard to observe and better address
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the recent changes in the global climate. Besides the contribution to environmental studies,
our BM also can serve as a foundation for many biological and ecological questions such as
the animal’s habitat preference and resource selection (Hooten et al., 2013). Many aspects
of the BM approach can be also further improved, such as analyzing the two dimensions of
the path simultaneously and developing simultaneous credible intervals.
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Appendix A Details of the Dead-Reckoning Algorithm

There are different versions of the DRA depending on the device and the subjects been
tracked, but the main steps (Elkaim and Decker, 2006; Wilson et al., 2007), can be summarized
as follows:

1. Obtain the earth’s gravity vector g and magnetic field vector m at the locations being
studied.

2. Correct the systematic bias in the accelerometer and magnetometer (Grewal et al.,
2007).

3. Smooth the accelerometer and magnetometer readings by a running mean or a low-pass
filter.

4. Find the animal’s orientation (often taken to be the tag’s orientation, namely the three-
dimensional direction of velocity) by solving Wahba’s problem (Wahba, 1965), which
is to solve for the rotation matrix O that minimizes the distance between the rotated
gravity and magnetic force (Og and Om) and the smoothed accelerometer reading ã
and magnetometer readings m̃, namely,

min
O

{
||ã−Og||2 + ||m̃−Om||2

}
.

5. Obtain the animal’s speed (norm of the velocity vector) by one of the following ap-
proaches:

(a) Assume it is a known constant.

(b) Assume it is measured by a speed meter (a wheel or paddle), which could only
measure the speed of the animal with respect to the water, but not to the earth.

(c) From the data recorded by the TDR, calculate the velocity in the depth direction
vz. Given the animal’s orientation o = {ox, oy, oz}, the three dimensional velocity
is then v = ovz/oz.

6. Starting from a known point, integrate the velocity to obtain the animal’s trajectory.

Although the DRA has been used for years and the data collecting devices are gradually
being improved by electrical engineers, there is still huge bias in the DRA results. As shown
later in this section, the bias of the DRA in our case study can be as large as 100km at the
end of a seven-day trip. According to our analysis and some simulation studies, the bias of
the DRA mainly owes to the following things:

1. Orientation bias: Although the gravity g can be precisely obtained, we can only obtain
m on a relatively sparse grid on the earth at a certain time point (Wilson et al., 2007)
rather than at detailed location and time points during the animal’s trip. The imprecise
magnetic vector introduces bias into the solution to Wahba’s problem.

Moreover, an unbiased solution to the Wahba’s problem (Step 4 above) requires the
smoothed accelerometer reading ã to be the projection of the gravity only. This is
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unlikely to be done by the smoother because the accelerometer reading is the projection
of the sum of all the external forces, including the gravity, acceleration from the animal
and forces from wave, etc. Similarly, the bias correction methods may fail to remove the
systematic bias in the accelerometer and magnetometer readings (Grewal et al., 2007).

2. Speed bias: The first two approaches above clearly involve some unrealistic assumptions.
As for the third approach, it fails to work when the animal is floating on the surface
(oz is zero).

3. Discretization bias: Even if both biases above could be removed, we must still discretely
approximate an integral in the continuous time domain. Although this problem can be
alleviated by increasing the sampling frequency, that could reduce the tag’s battery life
and limit the scale of the study.

Appendix B Details of the Bayesian Melding Model

This section include the detailed derivations used in the inference of our BM model.

B.1 Explicit expression of 〈β,η|X,Y〉

Following the model and notations in (2) to (7), it is easy to find

〈β,η|X,Y〉 ∝〈β,η,X,Y〉 = 〈η〉〈Y|η〉〈X|β,η〉

∝|R|−1/2 exp

{
−1

2
(η − f)TR−1(η − f)

}
× |D|−1/2 exp

{
−1

2
(Y −Gη)TD−1(Y −Gη)

}
× |C|−1/2 exp

{
−1

2
(X− Zβ − η)TC−1(X− Zβ − η)

}
, (18)

where the following notations are used in addition to those from (2) to (7):

• f = {f(2), f(3), . . . , f(T − 1)}T , a T − 2 vector as the prior mean of η;

• D = σ2GIK−2 is the covariance matrix of Y conditioning on η, where Im stands for the
identity matrix of dimension m;

• Z the design matrix for h as in (5)

• G is a (K − 2)× (T − 2) matrix, with

Gk,j =

{
1, j = tk − 1

0, Otherwise

Notice here the first time point is removed;

• R = R(2 : (T − 1), 2 : (T − 1)) is the (T − 2) × (T − 2) covariance matrix for the
Brownian Bridge;

• C = C(2 : T, 2 : T ) is the (T − 1)× (T − 1) covariance matrix for the Brownian Motion
error term ξ;
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In order to further simplify (18), the following notations are introduced:

• ζ = {βT ,ηT }T , which is the joint vector of β and η of length Q+ T − 2;

• U is a T −1× (Q+T −2) matrix with U(1 : (T −1), 1 : Q) = Z, U(1 : (T −2), (Q+1) :
(Q+T − 2)) = IT−2 and U(T − 1, (Q+ 1) : (Q+T − 2)) = 0, which maps Uζ = h +β;

• V is a (T − 2) × (Q + T − 2) matrix with V(1 : (T − 2), 1 : Q) = 0 and V(1 :
(T − 2), (Q+ 1) : (Q+ T − 2)) = IT−2, such that Vζ = η;

• W is a (K − 2) × (Q + T − 2) matrix with W(1 : (K − 2), 1 : Q) = 0 and W(1 :
(K − 2), (Q+ 1) : (Q+ T − 2)) = G, such that Wζ = Gη.

Some algebra could simplify (18) into

〈ζ|X,Y〉 ∝|R|−1/2|D|−1/2|C|−1/2×

exp

{
−1

2

[
(ζ −M−1

1 M2)
TM1(ζ −M−1

1 M2) +M3 −MT
2 M−1

1 M2

]}
,

∝ exp

{
−1

2

[
(ζ −M−1

1 M2)
TM1(ζ −M−1

1 M2)
]}

(19)

where

M1 =VTR−1V + WTD−1VG + UTC−1U

M2 =VTR−1f + WTD−1Y + UTC−1X

M3 =fTR−1f + YTD−1Y + XTC−1X.

It is shown here that the posterior of β,η conditioning on φ is a multivariate Gaussian
density. The main computation complexity of evaluating this density comes from calculation
of M−1

1 M2.

B.2 Derivation of (11) and (12)

It is well known that the Brownian Bridge and Brownian Motion process are Markovian (Stirza-
ker and Grimmett, 2001), such that:

[η(t)|η(t− 1), η(t− 2)] =[η(t)|η(t− 1)]

[ξ(t)|ξ(t− 1), ξ(t− 2)] =[ξ(t)|ξ(t− 1)],

where η(t) is a Brownian Motion process as in our model (2) and ξ(t) is a Brownian Motion
process as in (5). This Markovian property directly suggests the conditional independence
property of these two process, such that:

[η(t− 1, t+ 1)|η(t)] =[η(t− 1)|η(t)][η(t+ 1)|η(t)]

[ξ(t− 1, t+ 1)|ξ(t)] =[ξ(t− 1)|ξ(t)][ξ(t+ 1)|ξ(t)].

These properties help us to derive (11) and (12). As an illustration, we assume T = 5 (recall
that η(1) and η(5) are fixed. So only η(2, 3, 4) are random), and one GPS observation is
available at t = 3. The first part of (10), 〈η(1 : T \ t1:K)|β,ηG,X,Y〉 under this situation is

〈η(2), η(4)|η(3),X(2 : 4), Y (3),β〉 = 〈η(2), η(4)|η(3),X(2 : 4),β〉, (20)
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as Y (3) only depends η(3) and independent of all the other random variables. For brevity,
we will hide β term in all the following derivation and let Xi = X(i), ηi = η(i), ξi = ξ(i).
Using the conditional independence property of η and ξ together with certain variable trans-
formation, we can simplify (20) into

〈η2, η4|η3, X2:4〉 =
〈η2, η3, η4, X2, X3, X4〉
〈η3, X2, X3, X4〉

=
〈η2, η3, η4, ξ2, ξ3, ξ4〉
〈η3, X2, X3, X4〉

=
〈η2, η3, η4〉〈ξ2, ξ3, ξ4〉
〈η3, X2, X3, X4〉

=
〈η2|η3〉〈η4|η3〉〈η3〉〈ξ2|ξ3〉〈ξ4|ξ3〉〈ξ3〉

〈η3, X2, X3, X4〉

=
〈η2|η3〉〈ξ2|ξ3〉〈η4|η3〉〈ξ4|ξ3〉〈η3〉〈ξ3〉

〈η3, X2, X3, X4〉

=
〈η2, X2|η3, X3〉〈η4, X4|η3, X3〉〈η3, X3〉

〈η3, X2, X3, X4〉

=
〈η2, X2|η3, X3〉〈η4, X4|η3, X3〉

〈X2, X4|η3, X3〉
= . . . =

〈η2, X2|η3, X3〉〈η4, X4|η3, X3〉
〈X2|η3, X3〉〈X4|η3, X3〉

= 〈η2|η3, X2, X3〉〈η4|η3, X4, X3〉.

The above is an illustration on how we prove (11) and (12) and we omit the lengthy proof of
the general case. On the other hand, these expressions can be easily proved via the conditional
independence property of a graphical model as in Lauritzen (1996).

B.3 Explicit expression of (12)

In the above subsection, we have shown that:

〈η(tk + 1 : tk+1 − 1)|η(tk), η(tk+1),β,X,Y〉 =

〈η(tk + 1 : tk+1 − 1)|η(tk), η(tk+1),β,X(tk : tk+1)〉.

Here we derive the explicit expression of the right-hand side above. First, it is easy to use
the conditional independence property to find:

〈η(tk + 1 : tk+1 − 1)|η(tk), η(tk+1),β,X(tk : tk+1)〉

=
〈η(tk + 1 : tk+1 − 1)|η(tk), η(tk+1),β, X(tk), X(tk+1)〉
〈X(tk + 1 : tk+1 − 1)|η(tk), η(tk+1),β, X(tk), X(tk+1)〉

=
〈η(tk + 1 : tk+1 − 1)|η(tk), η(tk+1)〉

〈X(tk + 1 : tk+1 − 1)|η(tk), η(tk+1),β, X(tk), X(tk+1)〉
.

Define two new variables,

ηc(tk + 1 : tk+1 − 1) =η(tk + 1 : tk+1 − 1)|η(tk), η(tk+1)

Xc(tk + 1 : tk+1 − 1) =X(tk + 1 : tk+1 − 1)|η(tk), η(tk+1),β, X(tk), X(tk+1),

such that

〈η(tk + 1 : tk+1 − 1)|η(tk), η(tk+1),β,X(tk : tk+1)〉
=〈ηc(tk + 1 : tk+1 − 1)|Xc(tk + 1 : tk+1 − 1)〉 (21)
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Accoridng to the basic properties of the Brownian Bridge, it is easy to verify that

ηc(tk + 1 : tk+1 − 1) ∼MVN(fk, σ
2
HRk), (22)

where

fk(t) =f(t) + a′k(t)(η(tk)− f(tk)) + ak(t)(η(tk+1)− f(tk+1))

=a′k(t)η(tk) + ak(t)η(tk+1)

ak(t) =
t− tk

tk+1 − tk

a′k(t) =1− ak(t) =
tk+1 − t
tk+1 − tk

Rk(s, t) =
(s− tk)(tk+1 − t)

tk+1 − tk
, tk < s ≤ t < tk+1,

and MVN(·, ·) denotes a multivariate normal distribution.

The definition of Xc and X in (5) implies that Xc is the sum of a deterministic term and
two independent Gaussian processes:

Xc(tk + 1 : tk+1 − 1) = h(tk + 1 : tk+1 − 1) + ηc(tk + 1 : tk+1 − 1) + ξc(tk + 1 : tk+1 − 1),

where h is defined in (5) and ξc is defined similarly as ηc:

ξc(tk + 1 : tk+1 − 1) = ξ(tk + 1 : tk+1 − 1)|ξ(tk), ξ(tk+1) ∼ MVN(gk, σ
2
DRk)

with gk(t) = a′k(t)ξ(tk) + ak(t)ξ(tk+1).

In this way, the marginal distribution of Xc is

Xc(tk + 1 : tk+1 − 1) ∼ MVN(uk, (σ
2
H + σ2D)Rk), (23)

where

uk(t) = h(t) + fk(t) + gk(t)

= h(t) + a′k(t)(η(tk) + ξ(tk)) + ak(t)(η(tk+1) + ξ(tk+1))

= h(t) + a′k(t)(X(tk)− h(tk)) + ak(t)(X(tk+1)− h(tk+1)).

Also, the covariance between ηc and Xc is

Cov (ηc,Xc) = Cov (ηc,ηc) = σ2HRk. (24)

With (22), (23), and (24), we can easily find that there is no need to invert any matrices
when computing (21). As when the conditional covariance is calculated, the inverse of Rk

will be canceled by Rk, such that,

Cov (ηc,Xc) (Cov (Xc))−1 =σ2HRk

(
(σ2H + σ2D)Rk)

)−1
=

σ2H
σ2H + σ2D

Itk+1−tk−1

Cov (ηc,Xc) (Cov (Xc))−1 Cov (Xc,ηc) =σ2H(1−
σ2H

σ2H + σ2D
)Rk =

σ2Hσ
2
D

σ2H + σ2D
Rk.
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We only need to calculate ρ =
σ2
H

σ2
H+σ2

D
for the conditional mean and covariance. In this way,

the desired posterior in (21) is

〈η(tk + 1 : tk+1 − 1)|η(tk), η(tk+1),β,X(tk : tk+1)〉
=〈ηc(tk + 1 : tk+1 − 1)|Xc(tk + 1 : tk+1 − 1)〉
∼MVN

(
fk + ρ (X(tk + 1 : tk+1 − 1)− uk) , ρσ

2
DRk

)
(25)

B.4 Explicit expression of [φ,β,ηG|XG,Y]

Following notations in Appendix B.1

[φ,β,ηG|XG,Y] ∝ [φ][η(t1:K)|φ][Y|η(t1:K)][X(t1:K)|β,η(t1:K),φ]

∝[φ]|RG|−1/2 exp

{
−1

2
(ηG − fG)TR−1G (ηG − fG)

}
× |D|−1/2 exp

{
−1

2
(Y − ηG)TD−1(Y − ηG)

}
× |CG|−1/2 exp

{
−1

2
(XG − ZGβ − ηG)TC−1G (XG − ZGβ − ηG)

}
, (26)

where XG = X(t1:K) and RG = R(t1:K, t1:K). Similar notations apply to ηG, fG,CG,ZG.
Also, we will introduce the following notations similar to those in Appendix B.1, which is the
sub-vector or sub-matrix of those in Appendix B.1 with respect to the GPS observations:

• ζG = {βT ,ηTG}T , which is the joint vector of β and ηG of length Q+K − 2;

• UG is a K − 1 × (Q + K − 2) matrix with UG(1 : (K − 1), 1 : Q) = ZG, UG(1 :
(K−2), (Q+ 1) : (Q+T −2)) = IK−2 and UG(K−1, (Q+ 1) : (Q+T −2)) = 0, which
maps UGζG = hG + βG;

• VG is a (K − 2) × (Q + K − 2) matrix with VG(1 : (K − 2), 1 : Q) = 0 and VG(1 :
(K − 2), (Q+ 1) : (Q+K − 2)) = IK−2, such that VGζG = ηG;

Some algebra could simplify (26) into

[φ,β,ηG|XG,Y] ∝
1

σ2H

1

σ2D
× |RG|−1/2|D|−1/2|CG|−1/2×

exp

{
−1

2

[
(ζG −M−1

G1MG2)
TMG1(ζG −M−1

G1MG2) +MG3 −MT
G2M

−1
G1MG2

]}
, (27)

where

MG1 =VT
GR−1G VG + VT

GD−1VG + UT
GC−1UG

MG2 =VT
GR−1G fG + VT

GD−1Y + UT
GC−1G XG

MG3 =fTGR−1G fG + YTD−1Y + XT
GC−1G XG.

Following (27), it is easy to learn that

[ζG|XG,Y,φ] ∼MVN
(
M−1

G1MG2,M
−1
G1

)
. (28)
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Integrate ζG out, we have

[φ|XG,Y] ∝ 1

σ2H

1

σ2D
|RG|−1/2|D|−1/2|CG|−1/2|MG1|−1/2 exp

{
−1

2

[
MG3 −MT

G2M
−1
G1MG2

]}
(29)

B.5 Marginal distribution of η at the non-GPS points

With (28), we can marginalize ηG,β out in (25) to obtain 〈η(tk + 1 : tk+1 − 1)|X,Y〉, which
is later used in the numerical integration. Let ζk = {βT , η(tk), η(tk+1)}T and its mean and
covariance matrix obtained in (28) be denoted as ζ̃k, Σ̃k respectively.

The uk of (23) can be written as as a linear transformation of ζk, such that uk = Bkζk,
where Bk =

[
ρ
(
Zk −AkZ

G
k

)
,Ak

]
. Zk is the rows of the design matrix, Z(tk+1 : tk+1−1, 1 :

Q), which corresponds to this period of the non-GPS observation. ZGk = Z(tk,k+1, 1 : Q)
corresponds to the rows of the design matrix of the two GPS observations. Ak is the matrix
of the linear weights of a′k(t), ak(t) as in Equation (22). Marginalize ζk out in (25) results in

〈η(tk + 1 : tk+1 − 1)|X,Y〉 ∼ MVN
(
Bkζ̃k,BkΣ̃kB

T
k

)
(30)

B.6 Integration part of (15) via a Gaussian mixture

As introduced in Subsection 3.2, we evaluate the integration part of (15) via the numerical
integration in (17). The distribution of ζ is multivariate normal conditioning on φ as in (28)
and (30) and therefore the posterior density of ζ can be approximated by a mixture of

multivariate normal densities. Let ζ̃
(i)

and Σ̃
(i)

be the posterior mean and covariance of ζ
conditioning on the i-th grid point of φ(z(j1, j2)) (Here j1, j2 are collapsed into a single index
set and L = (J+

1 + J−1 + 1)× (J+
2 + J−2 + 1)). We simplify (17) into

[ζ|X,Y] ≈
L∑
i=1

wi[ζ|φ(i),X,Y] =

L∑
i=1

wiΨ(·; ζ̃(i), Σ̃(i)
),

where Ψ stands for the probability density function of the multivariate normal distribution.
For our application, we are only interested in finding out the posterior mean and variance of
ζ. As in (Frühwirth-Schnatter, 2006), the posterior mean equals

ζ̃ =
L∑
i=1

wiζ̃
(i)
,

and the posterior variance of the k-th element of ζ is

σ̃2k =

L∑
i=1

wi

[
Σ̃(i)(k, k) +

L∑
i=1

(
ζ̃(i)(k)− ζ̃(k)

)2]
.
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