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Abstract. Northern fur seals (Callorhinus ursinus) breeding on the Pribilof Islands, Alaska have declined

dramatically over the past 40 years. Effective conservation of northern fur seals depends on understanding

the foraging behavior of adult females whose foraging success is linked to pup survival. We determined the

foraging behavior for 11 tagged lactating female northern fur seals from the Pribilof Islands using a state-

space modeling approach with an autoregressive movement model. To interpret at-sea behavior in the

context of oceanic habitat, we spatially and temporally matched high-resolution reconstructed tracks to a

set of environmental covariates that included: commercial groundfish catch, sea surface temperature,

primary productivity, wind speed, depth and time of day. We used a Bayesian hierarchical framework to

implement a multinomial regression model to link behavior to environmental covariates and account for

the mismatch of scale between fur seal behavior and the environmental variables by incorporating an error-

in-covariates approach into the hierarchical model. The Bayesian framework allowed us to build a single

model to synthesize the information from all the northern fur seal foraging tracks and the available

information about the underlying environmental conditions. Application of the approach indicated that the

behavioral states for the northern fur seal were significantly related to the Alaska commercial groundfish

catch, particularly walleye pollock (Gadus chalogramma).
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INTRODUCTION

The population of northern fur seals (NFS) in

the Pribilof Islands of Alaska has declined

dramatically during the past 40 years, and

continues to decline without any obvious reason

yet identified (Towell et al. 2006, Lee et al. 2014,

Towell et al. 2014). Conservation efforts require a

foundation of scientific understanding about

NFS ecology, a key element of which is foraging
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strategy. The foraging strategy of adult female
NFS is of particular interest as success in finding
enough prey to eat can be linked not only to
adult survival but also to pup survival (Antonelis
et al. 1997). For a lactating female, foraging
success is a time-limited trial in which enough
energy must be obtained from prey caught in a
changing ocean environment to maintain a
dependent and growing pup left behind at her
natal rookery. Failure implies trouble meeting the
energy needs of her pup and/or herself, and
could affect their survival. The relationship
between lactating NFS movement and habitat is
shaped by foraging success and the physiological
constraints of feeding a stationary, land-based
pup. Understanding the relationship between
movement, behavior, prey species, and the
oceanic environment is a critical part of under-
standing population processes (Bowler and
Benton 2005, Patterson et al. 2009). Indeed, the
National Marine Fisheries Service’s NFS conser-
vation plan has identified this as a highest-level
priority (NMFS 2007).

We examined a set of lactating northern fur
seals that were tagged on the Pribilof Islands in
the Bering Sea during the breeding season of
2005 and 2006 in order to link foraging behavior
to environmental conditions and prey fields.
Marine animal movement is a complex 3-D
process that does not always simplify into lower
dimensions, and there is mounting evidence to
demonstrate the potential perils of inferring
animal behavior based on horizontal trajectories
alone (e.g., McClintock et al. 2013 and references
therein). For instance, horizontal straightness
indices (i.e., area restricted searches) poorly
correlate with feeding behaviors (Austin et al.
2006, Weimerskirch et al. 2007). First passage
time is a movement metric that measures animal
passage through a horizontal region of fixed
radius and has been linked to environmental
variables, but it can be confounded by the slow
speeds of resting behaviors, and the fast speeds
of foraging behavior along tortuous paths; both
behaviors lead to similar times to traverse a
fixed radius region. Depth information has been
widely used to determine dive type, but is open
to subjectivity in determining what dive types
or dive metrics to link to foraging behavior (e.g.,
Gentry et al. 1986, Goebel 2002). More recently,
classification methods that use state-space mod-

els have been used to infer behavioral states
(and switching) using horizontal location infor-
mation (e.g., Jonsen et al. 2007). Extensions of
standard state-space methods have been devel-
oped to link behavior to environmental covar-
iate information (Dragon et al. 2012, Breed et
al. 2012), but it remains a difficult problem to
capture the vertical dimension of animal move-
ment and its link to the environment. In this
study, we used both horizontal and vertical
movement information: high-resolution tracks
were constructed from tag orientation and
speed data, and depth information was used to
classify fur seal behavior using the approach
proposed by Dowd and Joy (2011).

The dominant prey in fur seal diets is juvenile
walleye pollock (Gadus chalogramma; Perez and
Bigg 1986, Sinclair et al. 1994, Zeppelin and Ream
2006, Zeppelin and Orr 2010), a species of
groundfish that is commercially caught as adults.
However, direct information on prey fields is
difficult to collect and is not always available.
This is also true for other environmental vari-
ables that affect foraging such as bathymetry
(Antonelis et al. 1997, Call et al. 2008) and the
shelf break (Goebel et al. 1991, Robson et al. 2004,
Sterling and Ream 2004), lunar cycle (Ream et al.
2005), thermocline depth, and surface fronts
(Nordstrom et al. 2013a, Sterling et al. 2014).
The extent to which these variables influence
prey fields is poorly understood (Ream et al.
2005, Kuhn et al. 2010).

Quantitatively linking behavior to changes in
the environment at the landscape level is
important for understanding foraging strategies
and fur seal ecology. Bayesian hierarchical
models have been suggested as an appropriate
statistical framework for doing this (Schick et
al. 2008). In this study, we developed and applied
such a Bayesian hierarchical model. The primary
advantage of the framework was that the
uncertainty in both seal behavior and the
environmental covariates could be fully account-
ed for by building a hierarchy of conditional
models to describe the complexity of our data
and the processes that generated them (Cressie et
al. 2009). Our framework emphasizes the uncer-
tainty in modeling behavior through the incor-
poration of errors-in-covariates, and population
inference using individual information. While
our application of this method was on the
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behavior of northern fur seals at a breeding site
(rookery) on the Pribilof Islands, it is important
to emphasize that our approach for analyzing
animal movement in relation to the environment
is adaptable for other populations and species.

MATERIALS AND METHODS

Our central goal was to understand how the
ocean environment influences the behavior of a
population of northern fur seals in the Bering
Sea. We used biotelemetry data as well as
external sources of information on the oceanic
environment. The approach, as detailed below,
included determining high-resolution positional
information from the tag data, identifying envi-
ronmental variables along the tracks, performing
behavioral inference using a state-space model,
and synthesizing all this information using a
hierarchical Bayesian statistical model to quanti-

fy the relationship between environment and
behavior.

Tag data
During the 2005 and 2006 breeding seasons, 18

lactating northern fur seals were captured at Reef
Rookery on St Paul Island (57.188 N, 170.278 W;
left panel of Fig. 1; 5 in 2005, 13 in 2006). Tags
were attached mid-dorsally to each fur seal using
methods described in Boyd and Croxall (1992).
Three types of tags were used: (1) An archival
dead-reckoner tag (Driesen & Kern GmbH, Bad
Bramstedt, Germany), (2) An ARGOS (Advanced
Research and Global Observation Satellite Plat-
form Transmitter Terminal) satellite transmitter
tag (Spot5, Wildlife Computers, Redmond,
Washington, USA), and (3) A VHF radio trans-
mitter tag (A2920 Glue On, Advanced Telemetry
Systems, Isanti, Minnesota, USA). The dead-
reckoner tags were 10-channel loggers with a

Fig. 1. The left panel shows Reef Rookery, St Paul Island, Pribilof Islands, Alaska. Reef Rookery is located on a

peninsula that extends off the southern coast of St Paul Island. The intensity of blue represents bathymetry of the

surrounding ocean. Adjacent waters are considered ‘‘on-shelf’’ and are typically ,200 m. The right panel shows

haul weight of walleye pollock calculated from the US Department of Commerce domestic observer data of the

Alaska groundfish fishery for 2004–2007 date-restricted to be during northern fur seal summer pupping dates:

July 9–November 11, 2004–2007. There is significant missing catch data off-shelf as there is no groundfish

industry here, thus our analysis is biased towards on-shelf behaviors. Identified behaviors of northern fur seal

along eleven at-sea foraging tracks of lactating female northern fur seals from St Paul Island, Alaska are also

shown.
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32-MB archive that recorded time, depth, speed
(using a swim paddle system), temperature,
light, pitch, roll, compass heading (in three-
dimensions, 3-D), and body orientation (belly
up or belly down). These were programmed to
collect data at 2-second or 5-second intervals for
the duration of the foraging trip (specifically, two
of the 2005 tags were set to sample at 5-second
intervals, and the remaining 2005 and all 2006
tags were programmed to sample at 2-second
intervals). The satellite tag information (latitude
and longitude) was used to calibrate dead-
reckoner route calculations. The radio tag al-
lowed the animals to be relocated when they
returned to the rookery. All fur seals were
recaptured in order to remove the tracking
devices, and retrieve the time series data logged
during their at-sea foraging trips.

Track reconstruction
Information from the dead-reckoner tags and

the ARGOS transmitters were combined to
produce high-resolution foraging tracks. The
dead-reckoner channels recorded compass bear-
ing, inclination, body orientation, depth, and
speed-through-the-water for each female. We
used the dead-reckoning channel vectors of
compass bearing, speed, and depth to reconstruct
the 2- and 3- dimensional swim paths of the fur
seals (e.g., Wilson et al. 1993, Ropert-Coudert et
al. 2002, Shiomi et al. 2008). We processed the
tag’s speed channel to correct for cumulative
errors due to bias in the speed paddle’s position.
Zero-speed periods were identified as regions
with near-zero variance, and linear interpolation
was used to re-calibrate the speed record. Each
foraging track was then corrected for any speed
and direction offsets and ocean drift by con-
straining the dead-reckoner track to lie between
ARGOS satellite locations which have limitations
related to accuracy of location and infrequency of
satellite locations per day (Loughlin et al. 1999,
Patterson et al. 2008). We used only high-quality
locations (ARGOS Location Classes 1, 2, 3 i.e.,
location error , 1.0 km; Mate et al. 1998) to
compute speeds to limit the possibility of large
location errors. We did not formally accommo-
date this source of errors in our track reconstruc-
tions as 1 km errors were deemed small relative
to the finest scale covariate data (1 minute of a
degree or 1.9-km resolution). We then translated

ARGOS locations into Universal Transverse
Mercator (UTM) coordinates, and translated the
dead-reckoner track into polar coordinates by
rotating the angle of movement, and rescaling
the radial coordinate to match the direction and
great circle distance between consecutive AR-
GOS locations. When applied to all fur seals, this
yielded a 2- or 5-second resolution track recon-
struction for each that in-filled between the
ARGOS satellite locations. In this way, the track
was linked in space and time to the environmen-
tal conditions encountered while foraging at-sea.
All location and movement analyses were con-
ducted in UTM units and back-transformed to
geographic coordinate units for presentation
purposes.

Fur seal behavior
Fur seal behavior along a foraging track was

determined using the state-space modeling ap-
proach proposed by Dowd and Joy (2011). The
analysis proceeds by differencing the tag’s depth
channel to create a measure of vertical velocity. A
vertical movement model based on a second
order auto-regressive model

wt ¼ a1wt�1 þ a2wt�2 þ et

was used where wt represents the vertical
velocity, and a1 and a2 are the autoregressive
parameters. The error process was assumed to be
a zero-mean white noise Gaussian process with
variance parameter r2

w. A unit time increment
here corresponded to the 2- or 5-second resolu-
tion of the tag data. The data along each fur seal
track is sectioned into 26-minute windows (with
13-minute overlap between adjacent windows)
allowing us to identify approximately stationary
ensembles of dives from which to determine
behavior. For each time window, the parameters
a1, a2 and r2

w are estimated, taking into account
observation error. This was accomplished using
an augmented state-space model and multiple
iterated filtering (see Dowd and Joy 2011 for full
details of the methodology). The along-track
parameter estimates were then further smoothed
using a locally optimized kernel smoother
(Herrmann 2013, R library ‘‘lokern’’) to identify
longer period behavior, and compensate for
short-term random parameter fluctuations.

The estimated along-track movement parame-
ters derived from the tag data were then
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classified into behavior types. We considered
three discrete behavior classes: (1) non-diving; (2)
active diving; and (3) exploratory diving. The
non-diving behavior corresponded to near-zero
values for the estimated process error variance
r2

w, and includes sleeping and resting states, as
well as surface transiting; these behaviors are
characterized by a lack of engagement in the
immediate environment. The behavioral states
corresponding to active and exploratory diving
are diagnosed from the estimated values for the
auto-regressive parameters a1 and a2. Time series
theory allows one to define the dynamic system
behavior of an AR(2) model based on the values
of a1 and a2 (Priestley 2004, Shumway and Stoffer
2006). We defined the a1, a2 values that corre-
sponded to periodic behavior to represent active
diving (i.e., regular and repeated dives). The
other a1 and a2 values that corresponded to non-
periodic behavior were identified as exploratory
diving (i.e., less regular and intermittent dives).

See Dowd and Joy (2011) for further details.
Fig. 2 provides a concrete illustration of this

behavioral classification using the movement
parameters. It shows the vertical velocity data,
the estimated values of a1 and a2, and the
corresponding behavioral classifications for a
single day (August 18, 2006) for one fur seal
track showing a clear correspondence between
the estimated parameter values and the behav-
ioral type. Thus we have taken the output of a
state space model that related movement char-
acteristics in vertical speed to coherent bouts or
segments of behavior. In the analysis that
follows, we concatenate adjacent 26-minute
windows of similar behavior into a single
observation of the classified behavior that then
acts as the response variable for that segment of
track. For each fur seal, the series of behaviors
observed along the length of track is then
associated with a set of space and time positions
in the Bering Sea that reflect the habitat where

Fig. 2. Time series for a single day, August 18, 2006 for a single track. Shown are the estimated AR(2) model

parameters a1 and a2; kernel smoothed (blue line) and original estimates (black dots). These are overlaid with the

time series of vertical velocity (black lines). The yellow, pink and grey blocks correspond to active diving,

exploratory diving, and non-diving, respectively (as diagnosed from values of a1 and a2).
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the fur seal engaged in each behavior. This will
be explicitly linked to the spatio-temporal envi-
ronmental covariate information in the following
section (At-sea environmental conditions), using the
Bayesian hierarchical model (Hierarchical Bayesian
model below).

At-sea environmental conditions
We considered a variety of available environ-

mental data from the Bering Sea that could
plausibly be linked to northern fur seal foraging
behavior. We included information on fisheries
(as a proxy for prey fields), as well as physical
and biological oceanographic characteristics that
are detailed below.

Commercial groundfish catch and walleye pol-
lock.—A major goal of the study was to ascertain
the extent (if any) to which fur seal behavior was
associated with fish abundance and, in particu-
lar, walleye pollock density. As a proxy for fish
abundance, we used the US Department of
Commerce domestic observer data of the Alaska
groundfish fishery for 2004–2007 (NMFS 2012).
We limited the fish catch data to be between July
9, the beginning date of the breeding season
(Trites 1992), and November 11, the median
dispersal dates for pups on St Paul Island in 2005
(Lea et al. 2009). We spatially linked the fur seal
tracks to individual groundfish haul at the
nearest minute of longitude and latitude (�1.9
km). We selected two variables of interest: (1) the
haul weight of walleye pollock (85% of the total
catch weight was walleye pollock), and (2) the
total catch weight (including both retained and
discarded species). Where multiple hauls were
linked to a single track segment, we took the
median pollock haul weight and total catch
weight to represent that segment of track (right
panel of Fig. 1). If no catch was linked to a
segment of track (i.e., off-shelf regions), this was
considered missing covariate data. Missing catch
data was not in-filled with zeros so that the catch
data could be used as a proxy for abundance of
prey, rather than directly representing fisheries
catch (and confounding issues of 0 catch with 0
effort).

Sea surface temperature.—Sea surface tempera-
ture (SST) is a primary oceanographic variable
that is easily measured (Nordstrom et al. 2013b),
and may influence the behavior of northern fur
seals (Nordstrom et al. 2013a). Here, temperature
was recorded directly by the dead-reckoner tag

at 2- or 5-second intervals. To isolate SST, we
removed all the data that were observed outside
of the top two meters of the ocean surface. The
median sea surface temperature along each
behavioral segment for each fur seal was
extracted and assigned as an environmental
covariate.

Primary productivity.—Ocean primary produc-
tivity was obtained from the NOAA CoastWatch
net primary productivity for the Gulf of Alaska
and Bering Sea. This is based on satellite-
collected chlorophyll-a concentration and photo-
synthetically available radiation (PAR) measure-
ments, corrected for the amount of organic
carbon used by planktonic organisms in respira-
tion (Behrenfeld and Falkowski 1997). We used
gridded spatial maps at 1/6th degree resolution
(;18.5 km) processed as 8-day time-averages
over the domain and period of interest. Primary
productivity was assigned to the foraging track
by linearly interpolating these data so as to
match the time and location of the fur seal track.

Wind speed.—To account for the potential effect
of sea-state on foraging behavior, wind speed
was determined along the fur seal tracks. We
used the National Climatic Data Center wind
product, which blends satellite wind speeds from
multiple platforms such as scatterometers, and
passive microwave radiometers (Zhang et al.
2006). For each 24-hour period, we extracted
daily wind speeds using the highest resolution 1/
4 degree (;28 km) gridded wind fields. These
were linearly interpolated to match the location
of each behavioral segment at the relevant time.

Ocean depth.—The bathymetry of this region of
the Bering Sea where the foraging tracks are
located is characterized by shallow on-shelf
waters ,200 m deep, and off-shelf waters with
ocean depths of 3000 m or more. Note the
maximum dive depth of a northern fur seal is
;200 m (Gentry et al. 1986). Hence, we simpli-
fied bathymetry into an on-shelf/off-shelf cate-
gorical variable (We also tried the definitions of
Call et al. (2008) that defined a three-level
categorical depth variable: inner-middle shelf
(0–100 m), outer shelf (100–200 m), and off-shelf
(.200 m), but the additional resolution was not
informative in our study). Under this definition,
‘‘off-shelf’’ waters include the deeper regions at
the shelf break associated with foraging behavior
in northern fur seals (Goebel et al. 1991, Robson
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et al. 2004, Sterling and Ream 2004). We matched
longitude and latitude of the track to the nearest
depth measurement from the ETOPO1 bathym-
etry model (Amante and Eakins 2009), which
gives bathymetry with resolution 1/60th of a
degree, (;1.9 km). We then calculated the
median depth for each of the behavior segments
along the at-sea track. For example, if the seal
was in an active diving mode between midnight
and 4am, we took the median depth of the ocean
during that period of the track, and classified it
as on-shelf or off-shelf.

Time of day.—Time for each behavioral state
was obtained from the dead-reckoner tag at the
start of each behavioral segment. As northern fur
seals have circadian patterns in behavior (Ream
et al. 2005), we transformed the local time of day
(t) into a circular variable of the form

Time ¼ AcosðxtÞ þ BsinðxtÞ

where x ¼ 2p/24 hr. This ensured that the
interpretation of time at 24:00 would be equiv-
alent to that at 00:00. This provides a sinusoidal
covariate function representing time of day,
wherein the coefficients A and B are the focus
of inference.

Hierarchical Bayesian model
We followed a hierarchical Bayesian modeling

approach to examine possible relationships be-
tween behavior and the environmental covariates
that describe fur seal at-sea habitat. This statis-
tical methodology addresses the linking of
behavior to habitat by decomposing the overall
problem into a set of simpler and more tractable
problems. Specifically, the complex joint proba-
bility distributions is expressed as a series of
conditional models that aim to explain the
relationship between data and a causal process
as follows (see Berliner 1996, Cressie et al. 2009):

PðParametersjDataÞ } PðDatajProcess; ParametersÞ
3 PðProcessjParametersÞ3 PðParametersÞ

where Pð�Þ represents a probability distribution.
The target distribution P(ParametersjData) that
embodies our solution allows us to determine the
parameters of our model linking behavior to the
environment, making use of all available data.
The first level of the hierarchy, P(DatajProcess,
Parameters), is the likelihood function or obser-
vation model that describes the observation

process. The second level, P(ProcessjParameters),
describes the state process model that links an
individual’s behavior to parameters; one can also
model explicitly the uncertainty in the environ-
mental covariates at this level. The third, or
highest, level is a parameter model, P(Parame-
ters) that expresses our uncertainty and prior
information on the parameters. Successful appli-
cation of the hierarchical framework requires that
careful attention be given to the specification of
the uncertainty introduced at each of these levels
as outlined below.

Observation model
Our observation model linked the set of

observed outcomes, yij, to their outcome
probabilities, pij, using a multinomial probabil-
ity model. Specifically, the observation vector,
yij ¼ ðy

ð1Þ
ij ; y

ð2Þ
ij ; . . . ; y

ðKÞ
ij Þ, characterized the behav-

ioral state of the ith fur seal over the jth
segment of track. Each y

ðkÞ
ij for k ¼ 1 to K was

equal to 1 if the animal was observed in the kth
behavioral state, and 0 otherwise. Correspond-
ingly, the probability of observing the ith fur
seal at the jth location engaged in the kth
behavioral mode was written in vector form as
pij ¼ ðp

ð1Þ
ij ; p

ð2Þ
ij ; . . . ; p

ðKÞ
ij Þ.

Local process model
The process model linked the probability of

being in a particular behavioral state, or the
latent probability vector pij, to the environmental
covariates. This was done using a multinomial
regression model (McCullagh and Nelder 1989)
according to the following procedure. Let Xij ¼
ðXij1;Xij2; . . . ;XijpÞ

T be the vector containing the
true values for each of the p covariates that
characterize the environment of the ith fur seal
over the jth segment of track (T designates the
vector transpose). We modeled the logarithm of
the ratio of the probability of each category
relative to that of a baseline category; this is done
since the total probability is one, and hence one
of the behavioral categories is redundant. We
selected the most commonly observed behavior
(here, non-diving) as our baseline category (k¼ 1),
following Agresti (1990). The multinomial logit
linear regression model is then

log
PðyðkÞij Þ ¼ 1

Pðyð1Þij Þ ¼ 0

 !
¼ Xijb

ðkÞ
i
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where bðkÞi ¼ bðkÞi1 ; b
ðkÞ
i2 . . . ; bðkÞip is the ith fur seal’s

parameter vector of regression coefficients corre-
sponding to behavior class k.

The process and observation models were
combined by defining the joint likelihood of the
three behavioral outcomes using the observation
model and the multinomial regression, for all K
track segments for the ith fur seal, can then be
expressed as:

PðpijXi; biÞ ¼ exp
XK

k¼2

bðkÞi

XJi

j¼1

y
ðkÞ
ij Xij

" # !(

�
XJi

j¼1

log 1þ
XK

k¼2

eXijb
ðkÞ
i

 !
g

where Ji is the total number of behavioral
segments for the ith fur seal.

One key aspect of this study was the need to
account for errors in the covariate data (Stephens
and Dellaportas 1992, Carroll et al. 2006). The
usual assumption in regression models is that all
covariates have been measured without error,
but violations of this assumption generate biased
and inaccurate inferences (Gustafson 2003). In
our case, these arose due to intrinsic measure-
ment errors in the environmental variables, as
well as the use of behavioral segments as the
analysis units. These lead to errors of represen-
tativeness introduced through spatial and tem-
poral averaging (i.e., aggregated data; see
Gotway and Young 2002).

Here, we explicitly accounted for errors in the
environmental covariates. To do so, we designate
the observed value of the covariates along the
behavioral segment asWij, where Wij is related to
its true value, Xij, according to

Wij ¼ Xij þUij

where Uij describes the observation error associ-
ated with the ith fur seal on the jth track segment
and we assumed that Uij ; Nð0;r2

iUÞ so that the
variance r2

iU is specific to an individual fur seal.
Note that this is a random effect model wherein
the true values are determined through an error-
prone but unbiased measure.

Errors in environmental covariates can be
incorporated into the hierarchical model as a
prior distribution for Xi. We selected the multi-
variate normal distribution (MVN) as the form of
that prior; i.e.,

PðXiÞ; MVN ðWi;r
2
iUIJi
Þ

where IJi
denotes an identity matrix of dimension

Ji. The full Bayesian specification also requires us
to specify a prior on its variance r2

iU. Specifically,
we select an independent conjugate inverse
gamma distribution or r2

iU ; IGðaU; bUÞ. The
parameters we chose for this distribution were
aU ¼ 3, and bU ¼ 1, and limited the sampling
range for the prior to be within a factor of 5
standard deviations of the prior distribution
mean. In practice, limiting the sampling range
for the prior only affected a small number of
cases for which there was limited information in
the covariate data to estimate r2

iU . A detailed
description of all Bayesian priors used in our
hierarchical model appear in the Appendix.

The following environmental covariates were
modeled with error: total catch weight of
groundfish; haul weight of walleye pollock;
primary productivity; sea surface temperature;
and wind. Total catch weight and haul weight of
walleye pollock were positively correlated, r ¼
0.85. Therefore, to limit the detrimental effects of
multicolinearity, these two groundfish measures
were never both incorporated into the same
model. The following covariates were considered
to be measured without error: bathymetry (on-
shelf/off-shelf ); and time of day.

Parameter model
The parameter model linked the lower-level

models for each individual fur seal, and so may
be viewed as a population model. The main idea
is that by linking the regression models for the
individual fur seals via a shared prior, we
incorporate population variability (Cressie et al.
2009), and borrow model strength between
animals (Ntzoufras 2009). This was done by
selecting a joint prior for the lower-level regres-
sion parameters, bi. That is, the regression
parameters specific to a single animal (e.g., bi )
are thought of as a random sample of coefficients
from a distribution of possible values, and the
posterior of each bi is a weighted mean of the
animal’s regression parameters and the overall
population effect.

We assumed that each of the components of bi
was normally distributed, and the joint prior
distribution of bi was then a multivariate normal
likelihood, i.e.,
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PðbiÞ; MVN ðB;RbÞ: ð1:1Þ

Again, the fully Bayesian specification requires
priors to be specified for the higher-level param-
eters B and Rb of the MVN likelihood of Eq. 1.1.
The following inverse Wishart (IW) and MVN
distributions were selected as priors for these
parameters,

PðRbÞ ; IWðv0;V0Þ

PðBjRbÞ ; MVN B0;
1

a0

Rb

0
@

1
A

with hyperparameters m0¼ m þ 3 (to ensure that
m0 . m), covariance matrix V0¼ m0 3 Im and a0¼
0.01 (to ensure the covariance matrix is uninfor-
mative). Here, Im denotes an identity matrix of
dimension m (i.e., Rb and Im are m3m matrices).
Note that the priors for both B and Rb were
conjugate to the higher-level MVN likelihood in
Eq. 1.1. Full derivations of conditional distribu-
tions appear in the Appendix.

Bayesian computation and statistical assessment
We have presented a hierarchical multinomial

Bayesian error-in-covariate model to describe the
relationship between a fur seal’s behavior and her
environment. To solve for the target posterior
distribution, we implemented a Markov Chain
Monte Carlo (MCMC) Metropolis-within-Gibbs
sampling algorithm that was coded using R
statistical software (R Core Development Team
2012). The MCMC was run for 1,000,000
iterations (discarding 10,000 iterations for
burn-in). The partial correlation coefficient was
used to determine the decimation rate for the
MCMC chain (i.e., we fit autoregressive models
of successively higher-orders until the lag
suggested non-significant partial correlations
between chain components). As a consequence,
chains were thinned to every 50th iteration. To
check robustness, we initialized the chains from
three different starting points using different
random seeds. Convergence was assessed by
inspection of trace plots, and using the Gelman-
Rubin statistic (R̂) as modified by Brooks and
Gelman (1998; using R library ‘‘coda’’) as a
quantitative measure of convergence.

Model comparison and model adequacy
Model comparison and selection was under-

taken using information-theoretic approaches. In

our study, we were interested in understanding
fur seal behavior in general and not simply the
behavior of the sampled fur seals. Since inference
around population parameters was our focus, we
compared the likelihood of each model’s popu-
lation parameters. Towards this end, we used the
following metrics: (1) Akaike Information Crite-
rion to compare model fit (AIC, Akaike 1973); (2)
the posterior mean deviance as a Bayesian
measure of fit (DðbÞ, Dempster 1974, Spiegelhal-
ter et al. 2002); and (3) mDIC as a diagnostic of
leverage (Spiegelhalter et al. 2002). Note that
these quantities provide useful comparisons
between candidate models, but do not provide
insight into model adequacy.

We examined model adequacy through distri-
butional summaries. We compared posterior
predictive distributions of replicated data (pro-
duced under the model assumptions) with the
observed data (Rubin 1984, Gelman et al. 2004).
Assessment of the overall goodness of fit used
posterior predictive P values ( ppp, Meng 1994,
Carlin and Louis 2000). Due to uncertain large
sample properties of posterior predictive P
values (see discussion in Bayarri and Berger
2000), we assumed that a P value around 0.5
indicated that the distributions of the replicated
and actual data were close, while a value close to
zero or one indicated strong differences between
them (Gelman et al. 2004).

Sample size effects
We ran simulations to examine the effect of

sample size (i.e., the number of tagged fur seals)
on model inference. This was done by drawing
sets of simulated fur seals with various sample
sizes from the model’s (population) posterior.
The analysis was then repeated for synthetic data
sets ranging from 5 to 100 fur seals. We then
compared these posteriors to the original poste-
rior via the Kullback-Leibler (K-L) divergence
statistic (Kullback and Leibler 1951). This al-
lowed us to quantify the discrepancy in posteri-
ors that was a consequence of sample size. The K-
L divergences were calculated using the R library
‘‘flexmix’’ (Leisch 2004).

RESULTS

Foraging tracks
Of the 18 lactating female northern fur seals

captured at Reef Rookery on St Paul Island
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during the pupping seasons of 2005 and 2006, 10
individuals yielded complete data sets from
which the foraging paths and behavior informa-
tion could be retrieved. One of these animals
provided data from two complete foraging trips.
The incomplete data records of the other animals
were due to tag failures including: water entering
the housing, the speed paddle breaking off, fish
vertebrae lodging between the speed paddle and
housing, and battery failure. Hence, our data set
for the analysis comprised of 11 complete
northern fur seal foraging tracks. Foraging trips
ranged in length from 5.5 days to 11.2 days, with
a median of 7 days spent at sea. An average of 40
ARGOS positional fixes and 404,400 archival
data records were obtained per trip.

The right panel of Fig. 1 maps the track
reconstructions of 11 fur seal at-sea trips (with
colors representing behavioral classifications).
The fur seals traveled an average maximum
linear distance from St Paul Island of 279 km,
with a maximum distance away of 391 km. In
general, these fur seals dispersed from the
rookery in all directions, except directly to the
north. They covered a wide area of both on-shelf
and off-shelf waters in the Bering Sea and
showed no preference for foraging in any single
area. Five animals stayed on the continental shelf,
one animal moved along the shelf break foraging
in the canyons, and five animals went across the
shelf break into the deep water of the central
Bering Sea. The one animal for which we had two

successive trips swam to a similar off-shelf
location in both her at-sea trips.

Behavioral inference
The track reconstructions of Fig. 1 show the

results from the behavioral classification along
the foraging tracks. The track segments corre-
sponding to the three behavioral classes (active
diving, exploratory diving, and non-diving)
identified according to the state-space algorithm
of Dowd and Joy (2011). Far from the rookery, a
mix of behaviors with a preponderance of active
diving can be seen for all tracks. There was
relatively more exploratory diving nearer the
rookery on the outgoing legs, while the near-
rookery incoming legs are characterized by non-
diving transiting behavior. Overall, the fur seals
spent 35% of the time at sea engaged in either
active (14%) or exploratory dives (21%). Fur seals
spent 65% of time at the surface engaged in non-
diving behaviors. The 11 foraging trips had a
median of 41 segments of different behavior
modes, with those animals taking longer forag-
ing trips exhibiting a greater number of behavior
changes.

Relating behavior to environment
We used the hierarchical Bayesian model (see

Materials and methods: Hierarchical Bayesian model )
to investigate the link between fur seal behavior
and the environment. A forward selection based
model building strategy was undertaken using

Table 1. Diagnostics and information criteria for the various Bayesian hierarchical models fit. The final, selected

model is noted in boldface.

Fitted model AIC� �DðbÞ� m§ mDIC} ppp#

Time only 346.5 351.3 6 31.9 0.80
Time and main effect models

Time þ log(Total catch) 290.1 349.9 8 38.9 0.55
Time þ log(Pollock) 290.0 344.0 8 37.8 0.72
Time þ On/Off shelf 298.7 344.5 8 40.8 0.84
Time þ Primary productivity 382.0 344.0 8 40.2 0.04

Time interaction models
Time 3 log(Total catch) 285.6 322.8 12 48.5 0.32
Time 3 log(Pollock) 284.3 323.2 12 44.3 0.72
Time 3 On/Off shelf 303.6 330.8 12 51.8 0.62
Time 3 Primary productivity 292.0 334.7 12 60.0 0.00
Time 3 log(Pollock) þ On/Off shelf 332.3 314.1 14 66.2 0.51

� AIC measures model fit (smaller implies better fit).
� �DðbÞ measures model adequacy (smaller implies better).
§ m represents the number of population parameters in the upper level model.
} mDIC is an estimate of leverage.
# ppp is a measure of model predictive power; a value greater than 0.05 implies there is no evidence model is predicting

poorly.
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the candidate information metrics for model
adequacy and selection (see Materials and meth-
ods: Bayesian computation and statistical assess-
ment). Detailed results are given in Table 1.

We first fit main effect models to each of our
at-sea environmental covariates. We then fit a
series of models that all included time of day
(Time) and incorporated the other covariates
one at a time (in an additive fashion). The time
of day models fit with Pollock, Total Catch and
Bathymetry (On/Off Shelf ) were found to be the
best subset according to the model selection
criteria. There was no relation to Primary
productivity. We failed to get satisfactory
convergence (R̂� 1) in the models with Sea
surface temperature and Wind, and these results
are omitted from Table 1.

We next fit a set of models that include Time
and one other main effect, and a Time 3 main
effect interaction. The two models with Time
interacting with a measure of groundfish catch
(both Pollock and Total Catch) had the best fit
diagnostics. The model that included Time of day
and Primary productivity failed the posterior
predictive test, suggesting that the model did not
fit the data well, despite having adequate higher-
order parameter convergence in their respective
MCMC’s (i.e., R̂ ’ 1).

One additional step of model complexity was
also considered. We fit a three-covariate model
based on the best time-interaction model, and
bathymetry (Time 3 Pollock þ On/Off Shelf;
Table 1). This model was penalized aggressively

by the AIC statistic, suggesting the additional
complexity was not warranted despite a fair
goodness of fit to the data. Table 1 reports a
subset of the results from the model fitting.

Our final selected model from this procedure
included the main effects of time of day and (log)
haul weight of walleye pollock and included an
interaction term of these covariates: Time 3

log(Pollock) (bold line in Table 1). It is notable
that the model that substituted Total Catch for
Pollock was a similarly good model with only
marginally poorer fit (Time 3 log(Total catch) in
Table 1). Coefficient magnitudes, and signs were
similar for both models. Detailed summary
statistics for posterior distributions of the regres-
sion coefficients can be found in Table 2). Fig. 3
graphically depicts magnitude and 95% credible
intervals for each of the population parameters,
and shows significance for the main effect of time
of day and the interaction of time of day and
(log) haul weight of walleye pollock.

To illustrate the effect of incorporating errors in
covariates, we also fit the final selected model but
assumed the covariates had no error (Fig. 3). By
including errors in covariates, the regression
parameters for those covariates with error were
shrunk towards zero, and tended to show a loss
of precision (i.e., there is increase in the uncer-
tainty estimates). Also, this figure shows the
parameter estimates of exactly measured covar-
iates (i.e., those not modeled with error such as
time of day) were significantly biased when the
covariate errors in the remaining covariates were

Table 2. Posterior summaries for higher level model coefficients, B, in the final, selected model (Time 3

log(Pollock); Table 1). Parameters with significant Bayesian P values (* P , 0.05) are noted in boldface.

Regression parameter B� Median q0.50 Credible interval (q0.025, q0.975) R̂�

Intercept B1:2 0.928 (�0.564, 2.473) 1.01
B1:3 0.649 (�0.983, 2.277) 1.00

cos(Time) B1:2 �1.336* (�2.594, �0.179)* 1.02
B1:3 0.413 (�0.874,1.797) 1.00

sin(Time) B1:2 �1.146 (�3.216, 0.913 1.00
B1:3 �2.098 (�4.434, 0.159) 1.04

log(Pollock) B1:2 0.61 (�0.597, 1.897) 1.03
B1:3 0.478 (�1.011, 1.974) 1.03

cos(Time) 3 log(Pollock) B1:2 0.068 (�1.045, 1.131) 1.01
B1:3 0.257 (�1.005, 1.549) 1.01

sin(Time) 3 log(Pollock) B1:2 �1.239 (�2.866, 0.252) 1.00
B1:3 �2.479* (�4.993, �0.339)* 1.05

� B1:2 denotes the regression parameters corresponding to the logit response log
�

p
ð2Þ
ij =p

ð1Þ
ij

�
, or the log odds of explanatory

diving vs. baseline non-diving. B1:3 denotes the regression parameters corresponding to the logit response log
�

p
ð3Þ
ij =p

ð1Þ
ij

�
, or log

odds of active diving vs. baseline non-diving).
� R̂ is the Gelman-Rubin Bayesian measure of convergence; values near 1 implies good convergence of the MCMC chain.
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ignored. The implication is that more of the

parameters would be significant if error in the

covariates had been omitted, and those param-

eters would be biased. However, the model fit

diagnostics for the case of no errors in covariates

were found to be significantly worse (without

error: AIC ¼ 297.0, DðbÞ ¼ 329.4, ppp ¼ 0.46 vs.

with error: AIC¼ 284.3, DðbÞ ¼ 323.2, ppp¼ 0.72).

Fig. 4. Probabilities of behavior modes active diving, exploratory diving, and non-diving in response to time of

day (shown for a 24-hour period starting at local noon), and increasing commercial catch size of walleye pollock.

The left, middle and right panels of the graph show the predicted relative probabilities of behaviors in areas of

small-sized walleye pollock hauls (0.5 tonnes), medium-sized hauls (2 tonnes), and large-sized hauls of pollock

(10 tonnes). Note that the x-axis depicts time of day where the axis starts and finishes at noon to highlight the

maximum amplitude of active foraging (in yellow) at night.

Fig. 3. The 95% credible intervals for 12 regression parameters B from the population level model that includes

time of day and (logged) haul size of walleye pollock (Time 3 Pollock) modeled with and without error. Each

pair of B coefficients show the credible intervals of the population-level parameters linking northern fur seal

behavior to at-sea habitat. B1:2 denotes the regression parameters corresponding to the logit response

log
�

p
ð2Þ
ij =p

ð1Þ
ij

�
, or the log odds of exploratory diving vs. baseline non-diving. B1:3 denotes the regression

parameters corresponding to the logit response log
�

p
ð3Þ
ij =p

ð1Þ
ij

�
, or log odds of active diving vs. (baseline) non-

diving.
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This comparison leads to the conclusion that
including covariate error in the model frame-
work provides a significantly better model fit, as
well as less biased parameter estimates.

The model results for the daily cycle of
behavior in response to changes in time of day
and commercial (log) haul size of walleye pollock
are shown in Fig. 4. This figure highlights the
increase in the relative probability of engaging in
active diving behaviors in response to increasing
size of pollock catch. This was accompanied by a
near-zero probability of non-diving behaviors
during those times of active diving in high catch
areas. One caution in the interpretation of this
figure is that our model did not predict the
length of time that the northern fur seals engaged
in particular behaviors, but rather predicted the
probability of a behavior beginning at various
times of the day. This figure suggests that the
peak in the start of exploratory dive behaviors is
around noon, and that fur seals are most likely to
begin active diving behaviors at just past 8:00 in
the evening, and most likely to end diving and
begin non-diving behaviors around 5:00 in the
morning. Comparing results for a haul size of 10
tonnes vs. 2 tonnes suggests there is a higher
probability of starting active diving behaviors
sooner in the evening, and hence a lower (in fact,
near-zero) probability of non-dive behaviors at

that time.
Central to the Bayesian paradigm is the notion

that as the data quantity (and quality) increase;
the posterior becomes less sensitive to prior
assumptions (Cressie et al. 2009). Fig. 5 shows a
result from the sample size assessment using the
Kullback-Liebler divergence metric, K-L. This
indicates that the gains in model performance
stabilize as the number of tagged fur seals
exceeds 20, after which the K-L divergence
becomes a relatively flat function. The figure
therefore suggests that significant improvement
in the inferences could have been gained if about
twice as many complete records were obtained
for analysis.

DISCUSSION

This study examined the at-sea foraging
behavior of a population of lactating northern
fur seals on St Paul Island, Alaska. Information
on fur seal behavior was obtained from electronic
tags for 11 complete foraging trips. Detailed 3-D
tracks were reconstructed using high-resolution
depth, speed and compass directional informa-
tion from attached tags, calibrated to positional
ARGOS fixes. Fur seal behavior was inferred
with a state-space modeling approach using
vertical velocity data and movement model; this
was the first comprehensive application of the
approach proposed by Dowd and Joy (2011) and
allowed for successful identification of coherent
behavioral segments (non-diving, active and
exploratory diving) along the foraging tracks. A
comprehensive hierarchical Bayesian framework
was then developed to relate dive behavior to the
marine environment in which they forage.

Our data were collected during the summer
pupping seasons when female northern fur seals
are tied to the rookery. Such restricted foraging
constrains their ability to explore the foraging
habitat in terms of both time spent away, and
distance travelled. That is, they must select
foraging habitat to obtain energy to feed them-
selves and their pup, while still returning to the
rookery in time to feed a fasting pup. Female
northern fur seals in our study embarked on
relatively long pelagic journeys averaging 279
km in linear distance from the rookery, and
lasting from 5.5 to 11.2 days. This distance is
consistent with, but slightly longer than, the

Fig. 5. Effect of increasing sample size on Kullback-

Leibler (K-L) divergence for one selected population-

level parameter (cos(Time) 3 log(Pollock): B13). K-L

divergence is 0 if and only if the posterior distribution

for a simulated dataset is identical to the model from

which it was generated. The dashed vertical line at 11

simulated fur seals corresponds to the sample size for

this study.
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linear distances reported in Nordstrom et al.
(2013a) (228 km) and Goebel et al. (1991) (200
km). The length of time of the foraging trip is
consistent with reported lengths from other
studies (e.g., Gentry and Holt 1986, Nordstrom
et al. 2013a; from 1 to 14 days). The tagged fur
seals did not appear collectively to prefer any one
region around St Paul Island, other than avoiding
the continental shelf immediately to the north.
Individuals may, however, have preferences: the
one female for which we had two consecutive
tracks went to a similarly located feeding area
off-shelf in both foraging trips. Call et al. (2008)
showed that 27 of 36 female fur seals with
repeated trips followed the same general direc-
tion they used in their previous trips. Other
studies have suggested that northern fur seals
from Reef Rookery use all hydrographic domains
around St Paul Island (e.g., Robson et al. 2004),
including both on-shelf and off-shelf habitats
(Loughlin et al. 1987, Goebel et al. 1991, Sterling
and Ream 2004, Call et al. 2008). Scat samples
from the same rookery contained both on-shelf
(e.g., walleye pollock, Pacific herring) and off-
shelf species (e.g., squid, myctophids; Zeppelin
and Orr 2010). Our behavior maps showed
constant movement and consistently changing
diving behaviors throughout the at-sea foraging
trips. Active and exploratory dive behaviors
were found over much of the foraging paths,
and non-diving transiting was most prevalent
near the rookery, particularly on the return leg.

Our study suggests that the foraging behavior
of lactating northern fur seals may be influenced
by the abundance of walleye pollock. Walleye
pollock of year-class 0 and 1 are the most
common prey in scat studies of the northern fur
seal diet (Perez and Bigg 1986, Sinclair et al. 1994,
Sinclair et al. 1996, Zeppelin and Ream 2006),
and walleye pollock comprised 89.3% of fur seal
diet as measured in scats collected within a
month of our 2006 tagged females foraging trips
from Reef Rookery (Zeppelin and Orr 2010). We
found that, in locations with more abundant
walleye pollock, northern fur seals were more
likely to be actively diving, especially at night.
Our proxy for walleye pollock abundance was
the US Department of Commerce domestic
observer data of the Alaska groundfish industry
aggregated over both time and space for the
region of interest. It is unlikely that this reflects

the real-time abundance of prey that the fur seals
actually encountered along their foraging route,
and is confounded with fishing effort. However,
it may still reflect persistent prey distributions
that are attractive to foraging northern fur seals.
Nordstrom et al. (2013a) also linked foraging of
northern fur seals to oceanic surface fronts
(eddies and filaments) and Kuhn (2011), to
thermocline depth. These features may also be
proxies for the spatial distribution of prey
species.

While we used commercial groundfish haul
data, we had no direct measure of bycatch of
juvenile pollock, nor did we have any small scale
evidence that commercial boats were fishing at
the same time and location as our tagged fur
seals. Hence, we cannot draw conclusions about
the potential for competition occurring between
the commercial fishery and northern fur seals.
However, we can say that being in the same area
where fishing occurred would not necessarily
imply competitive interactions unless it was
known that the fur seals were feeding on the
same fish targeted by the fishery, and whether
the abundance of that target prey was limited.
Evidence from scat analysis suggests that juve-
nile pollock of year-class 0 and 1 (2–20 cm) are
preferred by foraging fur seals (Zeppelin and
Ream 2006), which are smaller than the .40 cm
adults taken by the commercial fishery (Ianelli et
al. 2007). As adult walleye pollock are known to
prey on age-0 juveniles of their own species
(Bailey 1989), it is reasonable to suggest that the
link between the distribution of commercially
harvested adult pollock and northern fur seals
may be confounded due to their sharing of a
common prey resource. Alternatively, Gudmund-
son et al. (2006) investigated diet overlap at a
breeding rookery with commercially targeted
year-classes of walleye pollock using prey re-
mains in spews, and found significant overlaps
with the fishery. Although the percentage of the
diet that is regurgitated versus the percentage
that is passed through the digestive tract is
unknown, the spews indicate that northern fur
seals do eat adult size-classes of walleye pollock.

Our results highlight the strong diel pattern in
the foraging behavior of northern fur seals, and
its link to prey abundance. We found that female
fur seals showed strong preferences for active
diving at night, while preferring non-dive be-
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haviors such as resting or transiting in the
mornings. Afternoons were typically associated
with exploratory dive behaviors. Kuhn et al.
(2010) proposed that shallow foraging bouts at
night may be related to nighttime migrations of
juvenile pollock as they follow vertically migrat-
ing zooplankton to the surface. Deeper foraging
behavior has been associated with fur seals
targeting concentrated groups of juvenile pollock
at the thermocline (Kuhn 2011, Nordstrom et al.
2013a). We speculate that if northern fur seals
were aware of suitable feeding areas (from prior
experience or environmental cues), they could
reduce search time and energetic costs by
employing strategies (e.g., active or exploratory
diving) at particular times along foraging paths
that were successful on a previous feeding trip.

We used an auto-regressive movement model
to link dive information to foraging behavior.
This provided a mechanistic way of categorizing
dive types, using interpretable movement signa-
tures as diagnosed from the parameter values of
our AR(2) vertical movement model. This con-
trasts with other classification schemes that
distinguished dive types based on depth (e.g.,
Gentry et al. 1986, Goebel 2002), or used the
torturous paths associated with prey patchiness
(Benoit-Bird et al. 2013a, Benoit-Bird et al. 2013b).
Parameters corresponding to periodic solutions
of the AR(2) process were termed active diving.
These included shallow, repeated dives with
short surface-time intervals, as well as deeper,
repeated U-shaped dives with comparatively
longer surface recovery times. Such dive types
have been attributed to foraging behaviors in an
array of top marine predators such as gray seals
(Halichoerus grypus; Austin et al. 2006), southern
elephant seals (Gallon et al. 2013), Australian fur
seals (Arctocephalus pussillus; Arnould and Hin-
dell 2001), harbor seals (Phoca vitulina; Baechler et
al. 2002), and others. Parameters corresponding
to aperiodic solutions of the AR(2) process, or a
correlated vertical random walk, were termed
exploratory diving. That is, the typical surface
time between dives is longer and more irregular
relative to the dive time, and the vertical profile
of the dive may be more V-shaped. It is less clear
what the underlying motivation for intermittent
V-shaped dives is, but others have attributed
them to foraging on larger pelagic fish or squid in
northern gannets (Morus bassanus; Garthe et al.

2000), or non-foraging activities, including pred-
ator avoidance, and explorations in crabeater
seals (Lobodon carcinophagus; Bengston and Stew-
art 1992). The non-diving and non-foraging
behaviors such as resting, sleeping, grooming
and surface transiting were described, in the
AR(2) solution space, as corresponding to peri-
ods for which vertical movement followed a
white-noise process.

A general hierarchical data analysis and
modeling framework is proposed here for inter-
preting marine animal tag data. It starts with
track identification and behavioral inference
using a state-space model, and then uses these
results within a Bayesian hierarchal model to link
fur seal behavior to the ocean environment. The
analysis is spatially implicit (not explicit). That is,
we did not attempt to answer the question of
where in the ocean did the fur seals chose to
forage or not forage. With only 11 tracks over an
area of .125,000 km2, this would have been too
ambitious. Instead, we addressed the simpler
question: given that the fur seal swam through a
particular location, could we predict her most
likely behavior based on a set of local environ-
mental variables?

We note also that it is possible to consider the
entire approach within the Bayesian hierarchical
framework (e.g., Bestley et al. 2013). However,
for our case it made sense to separate the
components, doing the behavioral inference first
and then the Bayesian hierarchical model. The
main reason was the scale mismatch between the
high-resolution movement information (sec-
onds), and that of the behavioral inference and
linkage to covariates (hoursþ). This implies that
incorporating the state-space-based behavioral
inference as part of the hierarchy of the Bayesian
model, while conceptually appealing, would
have been computationally infeasible due to the
MCMC approaches employed. However, by
taking the output from the state-space model as
input to the hierarchical Bayesian model, there is
some risk of misclassification of behavior.

Although it might be possible to write a model
that has misclassification error in the response as
well as measurement errors in the covariates,
these models would have non-separable model
errors. The effect of misclassification of a binary
response in a logit regression model is to
introduce a misclassification parameter that must
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be additionally estimated (Neuhaus 1999) as well
as to reduce significance of the naive estimates of
regression parameters (Küchenhoff et al. 2006).
Therefore in this model, the potential error in the
classification of behavior would have the same
effect as modeling the covariate error by shrink-
ing regression parameters of model parameters
towards zero.

Our Bayesian hierarchical model has some
important features that should be incorporated
into any study attempting to link animal behav-
ior to environmental conditions. First, it focuses
on population level inference using a collection of
individuals. This was done by imposing a level in
the hierarchy that accounted for individual
variation. Second, errors in the environmental
covariates were modeled explicitly. This is
extremely important since not only are the
variables themselves subject to measurement
errors but they often have a complex error
structure since they are frequently themselves
data products derived from multiple sources. As
well, there is also a great deal of uncertainty
associated with spatially and temporally project-
ing them to match the fur seal tracks. In our
study, this is the case for the groundfish catch
data. Finally, we remark that since all our MCMC
algorithms were coded directly, we had full
control of the statistical model building process.
This allowed us to tailor the Bayesian computa-
tional approaches to the specific problem at
hand, and so account for the fact that these
sampling-based algorithms are sensitive to as-
sumptions made, and hence must be optimized
for reliable posterior inference.

In summary, our data and analysis framework
allowed us to link northern fur seal behavior to
their ocean environment. The analysis could be
further expanded. The sample size analysis
suggests that having another 10 tracks would
have generated enhanced precision. There are
other potentially useful channels on the deployed
tags that we have not made use of, particularly
the high-resolution 3-D body orientation infor-
mation that could provide further insight to
behavior. We anticipate that other oceanographic
information on, for example, frontal eddies and
filament locations, could provide additional
valuable insight into the association between
fur seals and the Bering Sea environment. The
general issues of scale, and temporal and spatial

dependence, remain outstanding issues in all
such problems linking fine-scale movement and
behavior to large-scale environmental variables.
It can, however, be treated with an errors-in-
covariate approach within a Bayesian hierarchi-
cal framework like the one used here. Finally, we
feel that examining movement and foraging
behavior of the maternal fur seal in relation to
her pup weight gains, rookery residency times,
and other life-history and bioenergetic character-
istics would further contribute to the under-
standing of fur seal ecology and pup survival.
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SUPPLEMENTAL MATERIAL

APPENDIX

Derivations of Target Distributions needed for the
Hierarchical Bayesian Models
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Higher-level Conditional Posterior Distributions.
The higher-level priors B, Rb are no longer a
function of the data y, X, Z, but instead a function
of the lower-level parameters bi, which are
sufficient for the original data. Thus the prior
for bi becomes the likelihood of the higher level
parameters, and since the dimension of B is q 3 p,
and in our application q¼1 as the higher-level
covariate matrix of independent variables con-
tains only the intercept, we can write this
likelihood as follows
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To suggest the form of the natural conjugate
priors for Rb and B, we factor the likelihood (A.1)
into two parts

PðbjB;Rb; 1Þ

} jRbj�n=2
exp � 1

2
ð�bi � 1�bÞ 0ðbi � 1�bÞþ

8<
:
ðB� �bÞ 01 01ðB� �bÞR�1

b

)

} jRbj�ðn�1Þ=2
exp � 1

2
ðbi � 1�bÞ 0ðbi � 1�bÞR�1

b

8<
:

9=
;3

jRbj�1=2
exp � 1

2
ðB� �bÞ 01 01ðB� �bÞR�1

b

8<
:

9=
;

where �b ¼ ð1 01Þ�11 0b, or the p-column averages of
the b matrix, and substituting S ¼ ðbi � 1�bÞ 0ðbi �
1�bÞ gives the factored likelihood:

PðbjB;Rb; 1Þ

} jRbj�ðn�1Þ=2
exp � 1

2
SR�1

B

8<
:

9=
;3

jRbj�1=2
exp � 1

2
ðB� �bÞ 01 01ðB� �bÞR�1

b

8<
:

9=
; ðA:2Þ

Marginal Posterior Distribution of Rb and B
The first line of the factored likelihood in (A.2)

suggests an Inverse Wishart (IW) kernel for the
covariance matrix Rb, and the second line
suggests a multivariate normal kernel (MVN)
for BjRb. The prior on B is dependent on the scale
parameter as Rb cannot be factored out of (A.2),
thus the prior for B is a conditionally conjugate
prior P(BjRb). The conjugate IW prior with
hyperparameters m0, V0 was selected for Rb, and
the conditional conjugate MVN with hyperpara-
meters B0;

1
a
Rb were selected for BjRb as follows
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The posterior distributions of B, Rb are then
derived
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We combine the terms involving B, letting
W ¼ ð1; . . . ; 1;

ffiffiffiffiffi
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p Þ 0, Z¼ ðb1; . . . ; bn;
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B0Þ 0, and
let

~B ¼ ð1 01þ a0Þ�1ð1 01�bþ a0B0Þ
¼ ðnþ a0Þ�1ðn�bþ a0B0Þ:

Then (A.3) becomes
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Through the combining of terms, the posterior
distribution for BjRb and Rb is a product of a
MVN and IW, i.e.,
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where ~B ¼ n �bþa0 B0

nþa0
, and �b ¼ ð1 01Þ�1 1 0b are con-

sistent with the definitions given above.
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